

Limited Phase II Property Assessment

**Bexley- Ferndale Property
948 Ferndale Place
Bexley, Ohio 43209**

Prepared by:

PANDEY Environmental, LLC
6277 Riverside Drive, Suite Two South
Dublin, OH 43017
Phone: 614-444-8078
www.pandeyenvironmental.com

Prepared for:

City of Bexley
2242 East Main Street
Bexley, Ohio 43209

Date of Preparation:

February 15, 2024

PANDEY
ENVIRONMENTAL, LLC

TABLE OF CONTENTS

1.0	INTRODUCTION.....	3
1.1	General.....	3
1.2	Purpose	3
1.3	Sampling Plan	4
1.4	Numerical Standards.....	4
2.0	SITE BACKGROUND.....	5
3.0	SAMPLING PROCEDURES	7
3.1	January 2024 Investigation.....	8
3.1.1	Soil Investigation.....	9
4.0	PHASE II FINDINGS	11
4.1	Regional Geology and Hydrogeology.....	11
4.2	Property-Specific Geology and Hydrogeology.....	12
4.3	QA/QC Data Review.....	12
4.4	Identification and Evaluation of Chemicals of Concern	13
5.0	CONCLUSIONS	15
6.0	STATEMENT OF LIMITATIONS AND QUALIFICATIONS	17

LIST OF FIGURES

FIGURE 1	PROPERTY LOCATION AND PARCEL MAP
FIGURE 2	SOIL SAMPLING LOCATIONS MAP
FIGURE 3.1	948 FERNDALE PLACE ANALYTICAL DATA TAG MAP
FIGURE 3.2	948 FERNDALE PLACE ANALYTICAL DATA TAG MAP

LIST OF TABLES

TABLE 1	SUMMARY OF SOIL SAMPLING DATA
---------	-------------------------------

LIST OF APPENDICES

APPENDIX A	LABORATORY ANALYTICAL DATA, CHAIN OF CUSTODY, AND LABORATORY AFFIDAVITS
APPENDIX B	FIELD SHEETS
APPENDIX C	RESUMES OF ENVIRONMENTAL PROFESSIONALS
APPENDIX D	GROUNDWATER RESOURCES MAP AND ODNR WATER WELL LOGS
APPENDIX E	CHEMICALS OF CONCERN TABLE
APPENDIX F	ANALYSES WITH MDL ABOVE STANDARDS • F-1: Soil Analyses with MDL Above Standards

1.0 INTRODUCTION

1.1 General

PANDEY Environmental, LLC (PANDEY) was authorized by its Client, the City of Bexley, to conduct a Limited Phase II Property Assessment for the property located at 948 Ferndale Place in Bexley, Ohio 43209 (parcel ID 020-003779-00, hereafter referred to as the subject property). The subject property consists of one (1) parcel totaling approximately 0.13 acres. The parcel is currently listed on Franklin County Auditor's webpage with ownership by Richard A/ Robert J Hart. The subject property is currently improved with one (1) structure, containing two separate living quarters. The property is zoned for residential use. This investigation is termed "limited" as this investigation is limited to the identification of the presence or absence of contamination in the soil at the subject property. This Phase II assessment does not serve to fully delineate the extent of vertical and horizontal contamination or to evaluate all potential exposures or potential receptors. This Phase II assessment was conducted as an additional investigation to the preliminary *Limited Phase 2 Property Assessment* for a larger grouping of parcels, dated February 1, 2023, which includes the current subject property.

PANDEY personnel responsible for preparation of this report include Mr. Atul Pandey, P.E. and Mr. Dominic Ragusa, Environmental Scientist. Resumes of Mr. Pandey and Mr. Ragusa are presented in Appendix C of this report.

1.2 Purpose

This Limited Phase II Property Assessment was conducted subsequent to the completion of an Ohio EPA VAP Phase I Property Assessment Report (dated March 9, 2018), and a limited Phase II investigation (dated February 1, 2023) for nine (9) parcels located along Ferndale Place and Mayfield Place, immediately adjacent to and including the current subject property. A Sampling and Analysis Plan was prepared by PANDEY subsequent to reviewing the findings of the Phase I and Phase II reports prepared for the residential dwellings located adjacent to and including the subject property. Conclusions of the previous Phase I and Phase II reports of the sites located adjacent to and including

the subject property determined that the general area along Ferndale & Mayfield Place is the location of a former undocumented landfill.

1.3 Sampling Plan

The sampling plan called for the installation of six (6) soil borings across the subject property. Soil borings were to be installed to an approximate depth of ten (10) feet below ground surface (bgs) where previous detections of chemicals of concern (COC's) were noted, to further investigate the extent of contamination due to historic landfill/ dumping site use, and to investigate the presence of COCs concurrent with the 0-10' below ground surface (bgs) Point of Compliance, as associated with the current Residential/Unrestricted Land Use. Details regarding the location of the soil borings, are provided in Section 4.0 of this report. Soil sampling analysis included Volatile Organic Compounds (VOCs), RCRA 8 Metals and Semi-Volatile Organic Compounds (SVOCs).

1.4 Numerical Standards

Numerical standards for this Phase II Property Assessment were obtained from Ohio EPA's Voluntary Action Program rules (VAP) in OAC 3745-300-08 effective June 5, 2023. In the event that numerical standards were not available in this rule, Ohio EPA VAP Program's Chemical Information Database and Applicable Regulatory Standards (CIDARS) database was consulted. A listing of numerical standards used can be found in Table 1. This listing also includes the source of the standard, and the date the standard went into effect. Because CIDARS databases are not dated, the date of download from Ohio EPA's website is listed as the standard date. Upon download of CIDARS information, numerical standards were compared to OAC 3745-300-08 as well as previous CIDARS downloads to ensure validity of any changes.

2.0 SITE BACKGROUND

The subject property is situated in a commercial and residential area located on the west side of Bexley, Ohio. Located at 948 Ferndale Place the subject property is comprised of one (1) parcel totaling approximately 0.13 acres. The subject property was developed for residential use and has served as the location of an apartment/ duplex for approximately 60 years. According to historical documentation reviewed during a Phase I Property Assessment (dated March 9, 2018) prepared for adjacent parcels, and observations made during field activities, it appears that the subject property was the location of a former unlicensed landfill prior to being developed for residential use between 1957 and 1964. Owned by Mr. Robert J Hart and Mr. Richard A Hart, this property currently maintains a duplex dwelling.

The property consists of a duplex which is situated along the eastern side of Ferndale Place, just north of E Livingston Ave. The subject property contains a small driveway area for parking two (2) cars. Small grass yards surround the dwelling on all sides, followed by an identical duplex dwelling adjacent to the south, and additional multi-family dwellings to the north. The duplex dwelling is a single-story unit. The building is in decent to slightly poor condition. Slight cracking is noted along the exterior portions of the unit, both in the brick/ mortar as well as the concrete sidewalks. These cracks are considered indicative of the settlement, as a result of the properties location within the historic landfill. The terrain surrounding the subject property is uneven and random, which indicates evidence of movement in the ground /foundation beneath the structures. Overhead powerlines and poles are located around the on-property structure. The overhead lines and poles were observed to be leaning at angles indicating subsurface movement in the area. Additional utility lines such as natural gas and water are located within the subsurface.

Alum Creek is located approximately 0.12 miles west of the subject property. Mayfield Place runs parallel to the west of the subject property, while Sheridan Ave. runs parallel to the east of the subject property. Multi-family buildings are located along Mayfield Place, west from the subject property and single-family homes are located adjacently east of the subject property along Sheridan Avenue. In close proximity to the north of the subject property is the Bexley Community Garden and Schneider Park (a community playground). Immediately south of the subject property are additional multi-family

structures along Ferndale Place until it intersects with E. Livingston Avenue. Commercial sites line E. Livingston Avenue which is south of the subject property. In close proximity to south of the subject property is Bexley Car Care, Making It Do, Inc. (auto repair), and Avenue Auto Repair.

PANDEY visited the site on January 22, 2024 to perform a site reconnaissance prior to beginning Phase II activities. The property consisted of one (1) duplex building. In the immediate vicinity of the subject property is additional multi-resident dwellings, all of which appear to be partially or fully occupied.

3.0 SAMPLING PROCEDURES

PANDEY conducted subsurface investigations in January 2024. These investigations were conducted to examine the subject property for the presence of a former undocumented landfill at the subject property.

The methods and procedures described in this section apply to the sampling and analysis of the soil media investigated by PANDEY during the course of this Phase II Property Assessment.

Laboratory Analytical Methods

VAP-certified laboratories are required to adhere to strict QA/QC procedures that have been predetermined and approved by Ohio EPA. The VAP certified laboratory ALS Environmental in Cincinnati, OH (CL # 0054) performed analysis using the following analytical methods:

- VOCs (Method 8260)
- SVOCs (Method 8270)
- RCRA 8 Metals (Method 6010/7471)

The laboratory data, affidavits, case narrative, and chain of custody forms are provided in Appendix A of this report.

The Quality Assurance (QA) and Quality Control (QC) specifications for the subject property are outlined herein. These specifications describe the QA/QC requirement set up for collecting and analyzing samples for chemical analyses. The QA/QC procedures were used to assess the accuracy, precision, completeness, representativeness, and comparability of the analytical data.

Field Sampling and Analysis Program

The field team conducting the assessment adhered to the field sampling and analysis program detailed below. It included specific requirements outlining the procedures to be followed in relation to sample handling, packaging, and shipping. It also set guidelines for field documentation procedures.

Sample Handling, Packaging, and Shipping Requirements

Upon collection, samples were placed into their appropriate sample containers. The exteriors of the sample containers were wiped clean and affixed with the proper labeling. Samples collected at the site were uniquely labeled with an alphanumeric sample identifier. Sample label information was completed using waterproof black ink. The labels contained such information as:

- Sample identification based on the sampling location;
- Time and date of collection; and,
- Parameters to be analyzed;

The samples were packaged, put on ice in a cooler and then sealed and shipped to the ALS Environmental Cincinnati, OH laboratory. Chain of custody documentation accompanied the samples submitted to the lab.

Field Documentation Procedures

The field team was required to maintain a field notebook. The field notebook was used to collect information on site conditions, personnel at the site, and other pertinent information. Drilling and lithological information was recorded on log forms. These forms are presented in Appendix B of this report.

3.1 January 2024 Investigation

During the January 2024 investigation, the on-site dwelling was occupied by residents in the space located in the western portion of the building, closest to Ferndale Place. The dwelling on the subject property included slab-on-grade construction. Cracks were observed in a few areas throughout the

exterior of the dwelling. However, no large penetrations of the concrete floor were observed. Windows on the inside of the residential building were closed. All exterior portions of the subject property were clear from debris, and marked appropriately with utility locating flags/ marker paint.

3.1.1 Soil Investigation

A subsurface investigation was conducted on January 24, 2024 with the advancement of six (6) soil bores (labeled 948 Ferndale-SB-1, 948 Ferndale-SB-2, 948 Ferndale-SB-3, 948 Ferndale-SB-4, 948 Ferndale-SB-5, 948 Ferndale-SB-6) at the subject property. A total of one (1) soil sample was collected from each installed soil boring.

The procedures for the sampling of soil borings listed above during this investigation are discussed below. Soil samples were analyzed by ALS Environmental, an Ohio EPA VAP certified laboratory. Analytical data and chain of custodies are provided in Appendix A of this report. Analytical data is summarized in Table 1 and locations of the soil bores are shown in Figures 2, 3.1 and 3.2 of this report.

Soil sampling was conducted using an AMS Powerprobe 9410 direct push drilling rig with four (4) foot long continuous dual-tube sampling. The dual-tubes are disposable acetate sleeve liners.

Soil samples were collected in two (2) foot intervals and logged with respect to soil classification, color, moisture, and odor to depths ranging from zero (0) to ten (10) feet below ground surface (bgs). Soil samples were selected for laboratory analysis based on a hierarchy of field observations. The highest readings recorded during soil screening from a Mini-RAE Photo-ionization Detector (PID) were noted; if all PID results were close to background or equal then visual observations and/or olfactory indications of contamination were used to select the soil samples for analysis. If no visual observations of contamination were observed, then varying depth intervals (i.e. 2'-4', 4'-6' and 8'-10') were chosen within each area in order to obtain a representative soil analysis from each interval of the soil strata. Thus, by collecting a soil analysis from varying intervals, the entire soil strata of an area could be representatively analyzed for chemicals of concern.

Soil samples collected for laboratory analysis were placed in 4 oz. glass soil jars with Teflon lids and placed in an iced cooler. Samples selected for appropriate laboratory analysis were shipped to ALS Environmental, an Ohio EPA VAP certified laboratory (CL# 0054). Laboratory chain of custody documentation and analytical results are included in Appendix A of this report.

Boreholes were abandoned by filling with hydrated Wyoming sodium bentonite clay.

4.0 PHASE II FINDINGS

4.1 Regional Geology and Hydrogeology

A review of the Soil Survey of Franklin County was conducted utilizing the USDA Natural Resources Conservation Service website (<http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx>).

According to the Soil Survey, the subject property is located in an urban land complex. 100% of the subject property is classified as Bennington-Urban Land Complex. This indicates that 100% of the predominant soil type has been disturbed and covered with an impervious layer consisting of buildings, streets, sidewalks and other structures.

The “Groundwater Resources Map of Franklin County” (James S. Schmidt, 1952) indicates that the subject property is located in an area in which “Very limited and often quite shallow glacial deposits of sand and gravel overlying shale bedrock of eroded ancestral drainage channel. Potential yields may not exceed 5 gallons per minute at depths of 15 to 35 feet.”

Based upon USGS topographical maps, shallow groundwater flow is expected to follow the ground level slope of surface elevations towards the nearest open body of water or intermittent stream. The groundwater flow was expected to be west to southwest based on topography towards Alum Creek, located approximately 0.12 miles west of the property. It should be noted that the groundwater flow direction to the west towards Alum Creek had been confirmed by PANDEY during previous investigations performed in the immediate vicinity of the subject property.

PANDEY also reviewed the well logs of water wells installed near the subject property as maintained by Ohio Department of Natural Resources, Division of Water. According to these records, there are no oil / gas well permits identified within one (1) mile of the subject property. Also, according to ODNR records, an approximate total of twenty-five (25) registered water wells were within 0.5 miles of the subject property. These wells range in depth from approximately 15 to 300 feet deep in formations of sand & gravel, clay, fill, shale and limestone bedrock. It appears that a shallow groundwater zone exists at approximately 17 to 20 feet below ground surface (bgs) within sand and gravel near the subject property. The majority of the ODNR well logs are related to monitoring wells that are being

used for environmental monitoring of the groundwater media in the area. No ODNR wells currently exist on the subject property itself. ODNR well log documentation is included in Appendix D of this report.

4.2 Property-Specific Geology and Hydrogeology

According to USGS topographic maps, the subject property is located approximately 759 feet above mean sea level. Elevations dip and are uneven across the subject property. The dips and inconsistent elevation changes observed across the site are evidence of subsurface settling and movement. The nearest surface water feature is Alum Creek, located approximately 0.12 miles west of the subject property. Bore logs showing specific soil descriptions are contained in Appendix B of this report.

Based on information gathered during previous environmental and groundwater investigations performed along the Ferndale-Mayfield Place corridor (on properties located adjacent to the subject property), the predominant groundwater flow direction is likely flowing to the west towards Alum Creek.

4.3 QA/QC Data Review

No control issues or discrepancies were noted which would have had the potential to impact the findings of this report.

All soil analyses were evaluated to ensure that laboratory method detection limits (MDLs) were not higher than the VAP Generic Direct Contact Soil Standard (GDCSS) for residential land use as presented in Appendix F of this report.

There were multiple instances where the MDLs or reporting limits for 4-Aminobiphenyl, benzidine, 7,12-dimethylbenz(a)anthracene, N-nitrosodiethylamine and N-Nitrosodimethylamine were higher than their associated standards as listed in Appendix F. These instances were not chemicals of concern at the subject property, but were included in a larger laboratory analytical suite. There is no reason to

anticipate the presence of any of these listed chemicals of concern in soil. Therefore, reporting limits are considered acceptable for these compounds.

4.4 Identification and Evaluation of Chemicals of Concern

Various chemicals of concern have been identified in the soil media at the subject property during the January 2024 Limited Phase II Property Assessment. The following section discusses the detections of these chemicals. Locations of soil sample locations are shown on Figures 2, 3.1 and 3.2 and analytical results are presented on Tables 1 of this report. References to soil standards in the following discussion are to the Ohio VAP Generic Direct Contact Soil Standards for residential / unrestricted land use.

On-Site Soils

The soils across the site were investigated by PANDEY during site investigations conducted in January, 2024 through the advancement of six (6) soil borings labeled 948 Ferndale-SB-1, 948 Ferndale-SB-2, 948 Ferndale-SB-3, 948 Ferndale-SB-4, 948 Ferndale-SB-5, 948 Ferndale-SB-6. The borings were installed across all exterior portions of the subject property.

The soil borings were installed to a depth of approximately ten (10) feet bgs. One (1) soil sample was collected from each installed soil boring across the subject property. A total of six (6) soil samples were submitted for laboratory analysis. The soil samples selected for laboratory analysis were based upon visual observations and olfactory indications of contamination, as well as readings from a MiniRAE 2000 Photoionization Detector (PID). These readings, as recorded on the soil boring logs, are provided in Appendix B of this report. Samples collected from all borings were analyzed for VOCs, SVOCs and RCRA Metals. Various fill materials including glass fragments, ceramic, clay tile, bricks, and cinders were observed at various depths ranging from 0' to approximately 10' below ground surface (bgs) across the subject property. This is consistent with observations noted in previous investigations performed on adjacent properties, described in Section 1.2. The fill materials confirm that the subject property is located on a former landfill area.

Laboratory analysis of all soil samples detected chemicals above laboratory reporting limits including metals (particularly Arsenic, Cadmium, Barium, Chromium, Lead and Mercury) and Semi-Volatile Organic Compounds, particularly Poly-Aromatic Hydrocarbons (PAHs) such as Benzo(a)pyrene. Multiple detections of Arsenic were noted in exceedance of the applicable VAP Generic Direct Contact Soil Standard (GDCSS) for residential /unrestricted land use. Additionally, multiple detections of the PAH Benzo(a)pyrene were noted in exceedance of the applicable VAP GDCSS for residential /unrestricted land use. However, all other detections of Metals and SVOCs and VOCs were below the applicable VAP soil standards.

The results of soil sampling across the property indicate that the soils underlying the property have been impacted by historical landfill / dumping operations.

5.0 CONCLUSIONS

This Limited Phase II Property Assessment was conducted to identify and confirm the presence of subsurface contamination in the soil from the impact of RCRA 8 Metals, VOCs and SVOCs. Analysis and interpretation of data gathered as part of this property assessment has led to the following conclusions:

- Multiple detections of chemicals of concern were reported in soil samples. Detections of RCRA Metals (Arsenic) were observed above applicable VAP Generic Direct Contact Soil Standards (GDCSS) for residential / unrestricted land use. Exceedances of the applicable VAP GDCSS for residential / unrestricted land use of RCRA metals were found in five (5) of the six (6) soil borings. Additionally, two (2) detections of the Poly-Aromatic Hydrocarbon (PAH) Benzo(a)pyrene were observed above the applicable VAP GDCSS for residential land use in the borings 948 Ferndale:SB-2 and 937 Ferndale:SB-3. Observed exceedances of RCRA Metals and PAHs in the soil media were detected in the 0'-2' and 4'-6' subsurface intervals across the subject property. This indicates that soils underlying the property have been impacted by historical landfill / dumping operations.
- All soil samples collected during this Limited Phase II Property Assessment from varying subsurface intervals were chosen for laboratory analysis through either a visual observation of the sample, through the PID screenings, or through an olfactory screening. Due to the limited scope of the project, only 1 sample was collected per soil bore. However, this does not imply that any other subsurface soil intervals are unimpacted by the former landfill operations.
- The soil bores installed at the property were approximately two inches in diameter and were somewhat limited in their ability to explore the landfill mass due to their small size. However, landfill material such as plastic shards, black staining and brick fragments were present at varying intervals throughout many intervals collected on the subject property. This observation confirms that the subject property is located on a former landfill.
- The detections in soil samples exceed the VAP residential GDCSS for arsenic and benzo(a)pyrene on a single chemical basis. This means that the individual chemical of concern exceeds the individual chemical standard as promulgated by the VAP. However, if an adjustment were to be performed for the presence of multiple chemicals in a sample, the risk

associated with those chemicals would be synergistically more than the risk that is presented on a single chemical comparison. Completion of a multiple chemical risk assessment is outside the scope of this assessment. However, in our opinion, the risk as presented in this report from the soil contamination is underestimated as it does not account for the cumulative risk from multiple chemicals of concern.

Based on this Limited Phase II Property Assessment, and the levels of Arsenic and Benzo(a)pyrene that exceed their corresponding VAP single chemical direct contact standards for residential or unrestricted land use in on-site soils, it is our opinion that the subject property, located at 948 Ferndale Place in Bexley, Ohio 43209 is located on a former undocumented landfill area. This judgment is based on visual site observations as well as after review of laboratory analytical data.

6.0 STATEMENT OF LIMITATIONS AND QUALIFICATIONS

The subject property has been examined based on best professional judgment and current Phase II Property Assessment evaluation methods. These methods include requirements of the Ohio Voluntary Action Program, ASTM Standards, and other professional site assessment guidelines.

The evaluations, assessments, and conclusions stated in this report represent judgment and/or opinions which are based solely upon visual and analytical observations made during the site investigation and public records search including information from previous environmental investigations.

Any reuse of this information, assessment, or conclusions contained herein by parties other than those mentioned in Section 1 of this report, shall be at the sole risk or liability of the party undertaking the reuse of this information.

PANDEY makes no claim that the areas of contamination discovered as a result of the limited Phase II Property Assessment investigations represent the only possible areas of contamination at the site. The sampling locations were chosen based on a review of historical resources, previous environmental assessments, interviews, and a visual site reconnaissance.

Evidence has not been provided to PANDEY which suggests the likelihood of contamination at areas of the property other than those investigated to date. However, undocumented and/or unreported spills and/or releases which may have the potential to negatively impact the subject property may have occurred at the subject property over the course of its history.

FIGURES

FIGURE 1: PROPERTY LOCATION AND PARCEL MAP

FIGURE 2: SOIL SAMPLING LOCATIONS MAP

FIGURE 3.1: 948 FERNDALE PLACE ANALYTICAL
DATA TAG MAP

FIGURE 3.2: 948 FERNDALE PLACE ANALYTICAL
DATA TAG MAP

Legend

948 Ferndale Place
Property Boundary

0 15 30 60 90 120 Feet

**948 Ferndale Place Property
Bexley, Ohio 43209**

**Figure 1
Property Location and Parcel Map**

PANDEY
ENVIRONMENTAL, LLC

6277 Riverside Drive; Suite Two South
Dublin, Ohio 43017
614-444-8078
www.pandeyenvironmental.com

Legend

- Soil Bore Locations
- 948 Ferndale Place Property Boundary

0 10 20 40 60 80 Feet

948 Ferndale Place Property
Bexley, Ohio 43209

Figure 2
Soil Sampling Location Map

PANDEY
ENVIRONMENTAL, LLC
6277 Riverside Drive; Suite Two South
Dublin, Ohio 43017
614-444-8078
www.pandeyenvironmental.com

948-Ferndale:SB-1:2-4 1/24/24

Metals

Mercury	0.043
Arsenic	11
Barium	57
Cadmium	0.23
Chromium	9.2
Lead	15

SVOCs

No Detections

VOCs

No Detections

948-Ferndale:SB-2:0-2 1/24/24

Metals

Mercury	0.66
Arsenic	17
Barium	180
Cadmium	1.3
Chromium	15
Lead	360

SVOCs

Anthracene	0.43
Benzo(a)anthracene	2
Benzo(a)pyrene	2.3
Benzo(b)fluoranthene	3.4
Benzo(g,h,i)perylene	1.8
Benzo(k)fluoranthene	1
Chrysene	2.3
Dibenzo(a,h)anthracene	0.44
Fluoranthene	4.8
Indeno(1,2,3-cd)pyrene	1.6
Phenanthrene	1.9
Pyrene	3.8

VOCs

No Detections

948-Ferndale:SB-3:4-6 1/24/24

Metals

Mercury	0.055
Arsenic	15
Barium	79
Cadmium	0.47
Chromium	11
Lead	38

SVOCs

Acenaphthene	0.88
Anthracene	1.7
Benzo(a)anthracene	3.4
Benzo(a)pyrene	3.2
Benzo(b)fluoranthene	3.7
Benzo(g,h,i)perylene	1.6
Benzo(k)fluoranthene	1.3
Chrysene	3.1
Dibenzo(a,h)anthracene	0.38
Dibenzofuran	0.38
Fluoranthene	8.9
Fluorene	0.55
Indeno(1,2,3-cd)pyrene	1.5
Phenanthrene	6.7
Pyrene	7.6

VOCs

No Detections

Maxar, Microsoft

Legend

● Soil Bore Locations

Detections of Metals are reported in mg/Kg-dry. Detections of SVOCs and VOCs are reported in ug/Kg-dry

Exceedances of GDCSS for residential land use are denoted in RED

0 10 20 40 60 80 Feet

948 Ferndale Place Property
Bexley, Ohio 43209Figure 3.1
948 Ferndale Place Analytical Data
Tag Map**PANDEY**
ENVIRONMENTAL, LLC6277 Riverside Drive; Suite Two South
Dublin, Ohio 43017
614-444-8078
www.pandeyenvironmental.com

Maxar, Microsoft

Legend

- Soil Bore Locations
- 948 Ferndale Place Property Boundary

0 10 20 40 60 80 Feet

Detections of Metals are reported in mg/Kg-dry. Detections of SVOCs and VOCs are reported in ug/Kg-dry
Exceedances of GDCSS for residential land use are denoted in RED

**948 Ferndale Place Property
Bexley, Ohio 43209**

**Figure 3.2
948 Ferndale Place Analytical Data
Tag Map**

PANDEY
ENVIRONMENTAL, LLC
6277 Riverside Drive; Suite Two South
Dublin, Ohio 43017
614-444-8078
www.pandeyenvironmental.com

TABLES

TABLE 1: SUMMARY OF SOIL SAMPLING DATA

Table 1: Summary of Soil Sampling Data
Sampling Area ALL: All Identified Areas

Bexley 948 Ferndale: 948 Ferndale Place; Bexley, Ohio

Chemical Name	948 Ferndale SB-1:2-4	948 Ferndale SB-2:0-2	948 Ferndale SB-3:4-6	948 Ferndale SB-4:4-6	948 Ferndale SB-5:0-2	948 Ferndale SB-6:4-6	Res.	GDCSS Comm.	GDCSS Const.
Metals & Inorganic Analytes									
Arsenic, Inorganic	11	17	15	17	18	20	14	100	760
Barium and Compounds	57	180	79	99	130	60	30000	760000	350000
Cadmium	0.23	1.3	0.47	1	1.5	0.44	140	3300	710
Chromium, Total	9.2	15	11	8.6	11	8.8	27	240	1300
Lead and Compounds	15	360	38	51	98	26	400	800	400
Mercury and Compounds	0.043	0.66	0.055	0.13	0.05	<0.04	3.1	3.1	3.1
Selenium	<0.69	<0.77	<0.71	<0.75	<0.74	<0.67	780	23000	12000
Silver	<1.1	<1.3	<1.2	<1.2	<1.2	<1.1	780	23000	12000
Pesticides									
Safrole	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	49	320	5100
Herbicides									
Dinoseb	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	130	2500	1600
Pentachlorophenol	<2	<2.1	<2	<2.1	<2.1	<1.9	20	100	1000
Volatile Organic Compounds (VOCs)									
4-chlorotoluene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Acetone	<0.059	<0.065	<0.06	<0.063	<0.063	<0.057	110000	110000	110000
Benzene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	28	130	1200
Bromobenzene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Bromochloromethane	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Bromodichloromethane	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	7.3	33	300
Bromoform	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	460	910	910
Bromomethane	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	17	76	550
Carbon Disulfide	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	740	740	740
Carbon Tetrachloride	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	16	74	460
Chlorobenzene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	660	760	760
Chloroform	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	7.9	35	320
Chloromethane	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	280	1200	1300
Chlorotoluene, 2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Cumene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	270	270	270
Dibromo-3-chloropropane, 1,2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	0.37	1.6	15
Dibromochloromethane	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	130	800	800
Dibromoethane, 1,2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	0.89	4.2	39
Dibromomethane (Methylene Bro	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	59	250	870
Dichlorobenzene, 1,2-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	380	380	380
Dichlorobenzene, 1,3-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Dichlorobenzene, 1,4-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	65	290	2600
Dichlorodifluoromethane	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	850	850	850
Dichloroethane, 1,1-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	89	390	1700
Dichloroethane, 1,2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	11	52	480
Dichloroethene, cis - 1,2	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	310	2400	2400
Dichloroethylene, 1,1-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	360	1200	360
Dichloroethylene, 1,2-trans-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	1900	1900	1900
Dichloropropane, 1,2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	39	170	180

All values reported in ppm. Non-detects are shown as less than reporting limit. n/a = Not Analyzed or Not Applicable

CoC = These chemicals were of particular concern in the Identified Area. Other analyses are either CoCs for overlapping Identified Areas, included as part of larger laboratory analysis suites, or analyzed to provide indication of a release through presence of breakdown products, etc.

GDCSS = Ohio VAP Generic Direct Contact Soil Standard for Residential, Commercial/Industrial and Construction Scenarios

Table 1: Summary of Soil Sampling Data
Sampling Area ALL: All Identified Areas

Bexley 948 Ferndale: 948 Ferndale Place; Bexley, Ohio

Chemical Name	948 Ferndale SB-1:2-4	948 Ferndale SB-2:0-2	948 Ferndale SB-3:4-6	948 Ferndale SB-4:4-6	948 Ferndale SB-5:0-2	948 Ferndale SB-6:4-6	Res.	GDCSS Comm.	GDCSS Const.
Volatile Organic Compounds (VOCs)									
Dichloropropane, 1,3-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	1500	1500	1500
Dichloropropane, 2,2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Dichloropropene, 1,1-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Dichloropropene, 1,3- (cis)	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Dichloropropene, 1,3- (trans)	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Ethyl Chloride	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	2100	2100	2100
Ethylbenzene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	140	480	480
Methyl butyl ketone	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Methyl Ethyl Ketone (2-Butanone)	<0.059	<0.065	<0.06	<0.063	<0.063	<0.057	28000	28000	28000
Methyl Isobutyl Ketone (4-methyl-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	3400	3400	3400
Methyl tert-Butyl Ether (MTBE)	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	1100	5400	8900
Methylene Chloride	<0.024	<0.026	<0.024	<0.025	<0.025	<0.023	740	3300	3300
n-butyl benzene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	110	110	110
n-propyl benzene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	260	260	260
Pentachloroethane	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	120	460	460
p-isopropyltoluene (Cymene)	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	160	160	160
Sec-butyl benzene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	140	140	140
Styrene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	870	870	870
Tert-butyl benzene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	180	180	180
Tetrachloroethane, 1,1,1,2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	49	230	680
Tetrachloroethane, 1,1,2,2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	15	71	670
Tetrachloroethylene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	170	170	170
Toluene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	820	820	820
Trichlorobenzene, 1,2,3,-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Trichlorobenzene, 1,2,4-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	140	400	400
Trichloroethane, 1,1,1-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	640	640	640
Trichloroethane, 1,1,2-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	28	130	1200
Trichloroethylene	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	10	48	17
Trichlorofluoromethane	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	1200	1200	1200
Trichloropropane, 1,2,3 -	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	0.102	4.4	19
Trimethylbenzene, 1,2,4-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	220	220	220
Trimethylbenzene, 1,3,5	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	180	180	180
Vinyl Chloride	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057	1.3	49	280
Xylene, m- p-	<0.012	<0.013	<0.012	<0.013	<0.013	<0.011			
Xylene, o-	<0.0059	<0.0065	<0.006	<0.0063	<0.0063	<0.0057			
Xylenes	<0.018	<0.019	<0.018	<0.019	<0.019	<0.017	260	260	260
Semi-Volatile Organic Compounds (SVOCs)									
1-Naphthylamine	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
2,6-Dichlorophenol	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
2-Picoline	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
3&4-Methylphenol	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
4,6-Dinitro-2-methylphenol	<2	<2.1	<2	<2.1	<2.1	<1.9	10	200	1300
4-Bromophenyl phenyl ether	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
4-Chlorophenyl phenyl ether	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			

All values reported in ppm. Non-detects are shown as less than reporting limit. n/a = Not Analyzed or Not Applicable

CoC = These chemicals were of particular concern in the Identified Area. Other analyses are either CoCs for overlapping Identified Areas, included as part of larger laboratory analysis suites, or analyzed to provide indication of a release through presence of breakdown products, etc.

GDCSS = Ohio VAP Generic Direct Contact Soil Standard for Residential, Commercial/Industrial and Construction Scenarios

Table 1: Summary of Soil Sampling Data
Sampling Area ALL: All Identified Areas

Bexley 948 Ferndale: 948 Ferndale Place; Bexley, Ohio

Chemical Name	948 Ferndale SB-1:2-4	948 Ferndale SB-2:0-2	948 Ferndale SB-3:4-6	948 Ferndale SB-4:4-6	948 Ferndale SB-5:0-2	948 Ferndale SB-6:4-6	Res.	GDCSS Comm.	GDCSS Const.
Semi-Volatile Organic Compounds (SVOCs)									
4-Nitroquinoline 1-oxide	<2	<2.1	<2	<2.1	<2.1	<1.9			
Acenaphthene	<0.24	<0.26	0.88	<0.25	<0.25	<0.23	7200	1000000	290000
Acenaphthylene	<0.24	<0.26	<0.24	<0.25	<0.25	<0.23	7200	130000	290000
Acetophenone	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	2500	2500	2500
Aniline	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	880	12000	11000
Anthracene	<0.24	0.43	1.7	<0.25	<0.25	<0.23	36000	670000	1000000
Azobenzene	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Benz[a]anthracene	<0.12	2	3.4	0.28	0.29	<0.11	23	610	9600
Benzidine	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	0.047	0.31	4.8
Benzo(g,h,i)perylene	<0.24	1.8	1.6	<0.25	<0.25	<0.23	3600	67000	430000
Benzo[a]pyrene	<0.12	2.3	3.2	0.24	0.31	<0.11	2.3	62	230
Benzo[b]fluoranthene	<0.24	3.4	3.7	0.33	0.44	<0.23	23	620	10000
Benzo[k]fluoranthene	<0.24	1	1.3	<0.25	<0.25	<0.23	230	6200	100000
Benzyl alcohol	<0.78	<0.85	<0.8	<0.83	<0.83	<0.75			
Bis(2-chloro-1-methylethyl) ether	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	1000	1000	1000
Bis(2-chloroethoxy)methane	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	380	7600	48000
Bis(2-chloroethyl)ether	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	5.3	30	290
Bis(2-ethylhexyl)phthalate	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	780	5100	79000
Butyl Benzyl Phthalate	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	5700	37000	590000
Carbazole	<0.24	<0.26	<0.24	<0.25	<0.25	<0.23	540	3500	56000
Chloroaniline, p-	<0.78	<0.85	<0.8	<0.83	<0.83	<0.75	54	350	800
Chloronaphthalene, Beta-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	13000	370000	1000000
Chlorophenol, 2-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	780	23000	27000
Chrysene	<0.24	2.3	3.1	0.26	0.33	<0.23	2300	62000	1000000
Cresol, o-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	6300	130000	790000
Cresol, p-chloro-m-	<0.78	<0.85	<0.8	<0.83	<0.83	<0.75	13000	250000	160000
Dibenz[a,h]anthracene	<0.12	0.44	0.38	<0.13	<0.13	<0.11	2.3	62	1000
Dibenzofuran	<0.24	<0.26	0.38	<0.25	<0.25	<0.23	160	4700	9700
Dibutyl Phthalate	<0.39	<0.43	<0.4	1.2	<0.42	<0.38	13000	250000	480000
Dichlorobenzidine, 3,3'-	<0.78	<0.85	<0.8	<0.83	<0.83	<0.75	24	160	2500
Dichlorophenol, 2,4-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	380	7600	32000
Diethyl Phthalate	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	100000	1000000	1000000
Dimethyl phthalate	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	100000	1000000	1000000
Dimethylphenol, 2,4-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	2500	51000	95000
Dinitrobenzene, 1,3-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	13	250	1600
Dinitrophenol, 2,4-	<2	<2.1	<2	<2.1	<2.1	<1.9	250	5100	32000
Dinitrotoluene, 2,4-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	35	230	3600
Dinitrotoluene, 2,6-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	7.3	47	750
Ethyl methanesulfonate	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Fluoranthene	<0.24	4.8	8.9	0.56	0.7	<0.23	4800	89000	170000
Fluorene	<0.24	<0.26	0.55	<0.25	<0.25	<0.23	4800	89000	580000
Hexachlorobenzene	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	4.1	22	16
Hexachlorobutadiene	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	17	17	17
Hexachlorocyclopentadiene	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	4.4	16	16

All values reported in ppm. Non-detects are shown as less than reporting limit. n/a = Not Analyzed or Not Applicable

CoC = These chemicals were of particular concern in the Identified Area. Other analyses are either CoCs for overlapping Identified Areas, included as part of larger laboratory analysis suites, or analyzed to provide indication of a release through presence of breakdown products, etc.

GDCSS = Ohio VAP Generic Direct Contact Soil Standard for Residential, Commercial/Industrial and Construction Scenarios

Table 1: Summary of Soil Sampling Data
Sampling Area ALL: All Identified Areas

Bexley 948 Ferndale: 948 Ferndale Place; Bexley, Ohio

Chemical Name	948 Ferndale SB-1:2-4	948 Ferndale SB-2:0-2	948 Ferndale SB-3:4-6	948 Ferndale SB-4:4-6	948 Ferndale SB-5:0-2	948 Ferndale SB-6:4-6	Res.	GDCSS Comm.	GDCSS Const.
Semi-Volatile Organic Compounds (SVOCs)									
Hexachloroethane	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	45	210	2000
Indeno[1,2,3-cd]pyrene	<0.12	1.6	1.5	0.14	0.18	<0.11	23	620	10000
Isophorone	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	11000	75000	1000000
Isosafrole	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Methapyrilene	<2	<2.1	<2	<2.1	<2.1	<1.9			
Methyl methanesulfonate	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Methylnaphthalene, 1-	<0.24	<0.26	<0.24	<0.25	<0.25	<0.23	350	390	390
Methylnaphthalene, 2-	<0.24	<0.26	<0.24	<0.25	<0.25	<0.23	480	8900	5800
Naphthalene	<0.24	<0.26	<0.24	<0.25	<0.25	<0.23	96	420	560
Nitroaniline, 2-	<2	<2.1	<2	<2.1	<2.1	<1.9			
Nitroaniline, 3-	<2	<2.1	<2	<2.1	<2.1	<1.9			
Nitroaniline, 4-	<0.78	<0.85	<0.8	<0.83	<0.83	<0.75	510	3500	16000
Nitrobenzene	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	130	560	3000
Nitrophenol, 2-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Nitrophenol, 4-	<2	<2.1	<2	<2.1	<2.1	<1.9			
Nitroso-di-N-propylamine, N-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	1.6	10	160
N-Nitrosomethylethylamine	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Octyl Phthalate, di-N-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	1300	25000	160000
o-Toluidine	<2	<2.1	<2	<2.1	<2.1	<1.9			
Phenanthrene	<0.24	1.9	6.7	0.35	0.34	<0.23	36000	670000	1000000
Phenol	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	38000	760000	940000
Pyrene	<0.24	3.8	7.6	0.46	0.52	<0.23	3600	67000	430000
Pyridine	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	160	4700	24000
Trichlorophenol, 2,4,5-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	13000	250000	1000000
Trichlorophenol, 2,4,6-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	130	2500	1600
Other/Unassigned									
Acetylaminofluorene, 2-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	2.9	19	290
Aminobiphenyl, 4-	<0.78	<0.85	<0.8	<0.83	<0.83	<0.75	0.52	3.4	53
Dimethylamino azobenzene [p-]	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	2.4	15	240
Dimethylbenz(a)anthracene, 7,12-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	0.041	0.25	4
Diphenylamine	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Methyl-5-Nitroaniline, 2-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38			
Methylcholanthrene, 3-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	0.49	3.2	51
Naphthylamine, 2-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	6	39	620
Nitrosodiethylamine, N-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	0.072	0.47	7.4
Nitrosodimethylamine, N-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	0.164	1.1	11
Nitroso-di-N-butylamine, N-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	2	15	160
Nitrosomorpholine [N-]	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	1.6	11	170
Nitrosopiperidine [N-]	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	1.2	7.5	120
Nitrosopyrrolidine, N-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	5.2	34	530
Pentachlorobenzene	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	100	2000	13000
Pentachloronitrobenzene	<0.78	<0.85	<0.8	<0.83	<0.83	<0.75	42	270	4300
Phenacetin	<0.78	<0.85	<0.8	<0.83	<0.83	<0.75	4900	32000	510000
Tetrachlorobenzene, 1,2,4,5-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	38	760	4800

All values reported in ppm. Non-detects are shown as less than reporting limit. n/a = Not Analyzed or Not Applicable

CoC = These chemicals were of particular concern in the Identified Area. Other analyses are either CoCs for overlapping Identified Areas, included as part of larger laboratory analysis suites, or analyzed to provide indication of a release through presence of breakdown products, etc.

GDCSS = Ohio VAP Generic Direct Contact Soil Standard for Residential, Commercial/Industrial and Construction Scenarios

Table 1: Summary of Soil Sampling Data
Sampling Area ALL: All Identified Areas

PANDEY
ENVIRONMENTAL, LLC

Bexley 948 Ferndale: 948 Ferndale Place; Bexley, Ohio

Chemical Name	948 Ferndale SB-1:2-4	948 Ferndale SB-2:0-2	948 Ferndale SB-3:4-6	948 Ferndale SB-4:4-6	948 Ferndale SB-5:0-2	948 Ferndale SB-6:4-6	Res.	GDCSS Comm.	GDCSS Const.
<i>Other/Unassigned</i>									
Tetrachlorophenol, 2,3,4,6-	<0.39	<0.43	<0.4	<0.41	<0.42	<0.38	3800	76000	480000

All values reported in ppm. Non-detects are shown as less than reporting limit. n/a = Not Analyzed or Not Applicable

CoC = These chemicals were of particular concern in the Identified Area. Other analyses are either CoCs for overlapping Identified Areas, included as part of larger laboratory analysis suites, or analyzed to provide indication of a release through presence of breakdown products, etc.

GDCSS = Ohio VAP Generic Direct Contact Soil Standard for Residential, Commercial/Industrial and Construction Scenarios

APPENDIX A

LABORATORY ANALYTICAL DATA, CHAIN OF CUSTODY,
AND LABORATORY AFFIDAVITS

02-Feb-2024

Jason Martin
Pandey Environmental, LLC
6277 Riverside Drive
Suite Two South
Dublin, OH 43017

Re: **948 Ferndale Place**

Work Order: **24010877**

Dear Jason,

ALS Environmental received 6 samples on 26-Jan-2024 01:00 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Laboratory Group. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 55.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Shawn Smythe

Electronically approved by: Shawn Smythe

Shawn Smythe
Project Manager

Report of Laboratory Analysis

ADDRESS 4388 Glendale Milford Rd Cincinnati, OH 45242- | PHONE (513) 733-5336 | FAX (513) 733-5347

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Work Order: **24010877**

Work Order Sample Summary

Lab Samp ID	Client Sample ID	Matrix	Tag Number	Collection Date	Date Received	Hold
24010877-01	948 Ferndale:SB-1:2-4	Soil		1/24/2024 10:26	1/26/2024 13:00	<input type="checkbox"/>
24010877-02	948 Ferndale:SB-2:0-2	Soil		1/24/2024 10:38	1/26/2024 13:00	<input type="checkbox"/>
24010877-03	948 Ferndale:SB-3:4-6	Soil		1/24/2024 11:12	1/26/2024 13:00	<input type="checkbox"/>
24010877-04	948 Ferndale:SB-4:4-6	Soil		1/24/2024 11:27	1/26/2024 13:00	<input type="checkbox"/>
24010877-05	948 Ferndale:SB-5:0-2	Soil		1/24/2024 11:39	1/26/2024 13:00	<input type="checkbox"/>
24010877-06	948 Ferndale:SB-6:4-6	Soil		1/24/2024 12:13	1/26/2024 13:00	<input type="checkbox"/>

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Work Order: 24010877

Case Narrative

The analyses requested were analyzed according to Ohio Voluntary Action Program requirements. Affidavits are available upon request.

The analytical data provided relates directly to the samples received by ALS Laboratory Group and for only the analyses requested.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Laboratory Group. Samples will be disposed in 30 days unless storage arrangements are made.

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-1:2-4
Collection Date: 1/24/2024 10:26 AM

Work Order: 24010877
Lab ID: 24010877-01
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MOISTURE						
Moisture	16			% of sample	1	Analyst: CS 1/29/2024
MERCURY BY CVAA						
Mercury	0.043		0.042	mg/Kg-dry	1	Analyst: SLT 1/31/2024 02:54 PM
METALS BY ICP						
Arsenic	11		1.1	mg/Kg-dry	1	Analyst: JW 1/31/2024 12:50 PM
Barium	57		4.6	mg/Kg-dry	1	1/31/2024 12:50 PM
Cadmium	0.23		0.23	mg/Kg-dry	1	1/31/2024 12:50 PM
Chromium	9.2		2.3	mg/Kg-dry	1	1/31/2024 12:50 PM
Lead	15		4.6	mg/Kg-dry	1	1/31/2024 12:50 PM
Selenium	ND		0.69	mg/Kg-dry	1	1/31/2024 12:50 PM
Silver	ND		1.1	mg/Kg-dry	1	1/31/2024 12:50 PM
SEMI-VOLATILE ORGANIC COMPOUNDS						
1,2,4,5-Tetrachlorobenzene	ND		390	µg/Kg-dry	1	Analyst: DTL 1/31/2024 08:20 PM
1,2,4-Trichlorobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
1,2-Dichlorobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
1,3-Dichlorobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
1,3-Dinitrobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
1,4-Dichlorobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
1-Methylnaphthalene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
1-Naphthylamine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2,3,4,6-Tetrachlorophenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2,4,5-Trichlorophenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2,4,6-Trichlorophenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2,4-Dichlorophenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2,4-Dimethylphenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2,4-Dinitrophenol	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
2,4-Dinitrotoluene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2,6-Dichlorophenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2,6-Dinitrotoluene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2-Acetylaminofluorene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2-Chloronaphthalene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2-Chlorophenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2-Methylnaphthalene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
2-Methylphenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2-Naphthylamine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
2-Nitroaniline	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
2-Nitrophenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-1:2-4

Collection Date: 1/24/2024 10:26 AM

Work Order: 24010877

Lab ID: 24010877-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
2-Picoline	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
3&4-Methylphenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
3,3'-Dichlorobenzidine	ND		780	µg/Kg-dry	1	1/31/2024 08:20 PM
3-Methylcholanthrene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
3-Nitroaniline	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
4,6-Dinitro-2-methylphenol	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
4-Aminobiphenyl	ND		780	µg/Kg-dry	1	1/31/2024 08:20 PM
4-Bromophenyl phenyl ether	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
4-Chloro-3-methylphenol	ND		780	µg/Kg-dry	1	1/31/2024 08:20 PM
4-Chloroaniline	ND		780	µg/Kg-dry	1	1/31/2024 08:20 PM
4-Chlorophenyl phenyl ether	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
4-Nitroaniline	ND		780	µg/Kg-dry	1	1/31/2024 08:20 PM
4-Nitrophenol	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
4-Nitroquinoline 1-oxide	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
5-Nitro-o-toluidine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
7,12-Dimethylbenz(a)anthracene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Acenaphthene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Acenaphthylene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Acetophenone	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Aniline	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Anthracene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Azobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Benzidine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Benzo(a)anthracene	ND		120	µg/Kg-dry	1	1/31/2024 08:20 PM
Benzo(a)pyrene	ND		120	µg/Kg-dry	1	1/31/2024 08:20 PM
Benzo(b)fluoranthene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Benzo(g,h,i)perylene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Benzo(k)fluoranthene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Benzyl alcohol	ND		780	µg/Kg-dry	1	1/31/2024 08:20 PM
Bis(2-chloroethoxy)methane	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Bis(2-chloroethyl)ether	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Bis(2-chloroisopropyl)ether	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Bis(2-ethylhexyl)phthalate	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Butyl benzyl phthalate	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Carbazole	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Chrysene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Dibenz(a,h)anthracene	ND		120	µg/Kg-dry	1	1/31/2024 08:20 PM
Dibenzofuran	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Diethyl phthalate	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Dimethyl phthalate	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-1:2-4

Collection Date: 1/24/2024 10:26 AM

Work Order: 24010877

Lab ID: 24010877-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Di-n-butyl phthalate	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Di-n-octyl phthalate	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Dinoseb	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Diphenylamine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Ethyl methanesulfonate	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Fluoranthene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Fluorene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Hexachlorobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Hexachlorobutadiene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Hexachlorocyclopentadiene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Hexachloroethane	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Indeno(1,2,3-cd)pyrene	ND		120	µg/Kg-dry	1	1/31/2024 08:20 PM
Isophorone	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Isosafrole	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Methapyrilene	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
Methyl methanesulfonate	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Naphthalene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Nitrobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
N-Nitrosodiethylamine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
N-Nitrosodimethylamine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
N-Nitroso-di-n-butylamine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
N-Nitrosodi-n-propylamine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
N-Nitrosomethylamine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
N-Nitrosomorpholine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
N-Nitrosopiperidine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
N-Nitrosopyrrolidine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
o-Toluidine	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
p-Dimethylaminoazobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Pentachlorobenzene	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Pentachloroethane	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Pentachloronitrobenzene	ND		780	µg/Kg-dry	1	1/31/2024 08:20 PM
Pentachlorophenol	ND		2,000	µg/Kg-dry	1	1/31/2024 08:20 PM
Phenacetin	ND		780	µg/Kg-dry	1	1/31/2024 08:20 PM
Phenanthrene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Phenol	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Pyrene	ND		240	µg/Kg-dry	1	1/31/2024 08:20 PM
Pyridine	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Safrole	ND		390	µg/Kg-dry	1	1/31/2024 08:20 PM
Surr: 2,4,6-Tribromophenol	61.7		14.2-136	%REC	1	1/31/2024 08:20 PM
Surr: 2-Fluorobiphenyl	66.2		30-116	%REC	1	1/31/2024 08:20 PM

Note:

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-1:2-4
Collection Date: 1/24/2024 10:26 AM

Work Order: 24010877
Lab ID: 24010877-01
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorophenol	66.7		5.42-113	%REC	1	1/31/2024 08:20 PM
Surr: 4-Terphenyl-d14	62.4		27.3-138	%REC	1	1/31/2024 08:20 PM
Surr: Nitrobenzene-d5	67.9		23.7-109	%REC	1	1/31/2024 08:20 PM
Surr: Phenol-d6	68.3		24.9-103	%REC	1	1/31/2024 08:20 PM
VOLATILE ORGANIC COMPOUNDS						
			SW8260B			Analyst: SK
1,1,1,2-Tetrachloroethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,1,1-Trichloroethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,1,2,2-Tetrachloroethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,1,2-Trichloroethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,1-Dichloroethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,1-Dichloroethene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,1-Dichloropropene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2,3-Trichlorobenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2,3-Trichloropropane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2,4-Trichlorobenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2,4-Trimethylbenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2-Dibromo-3-chloropropane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2-Dibromoethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2-Dichlorobenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2-Dichloroethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,2-Dichloropropane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,3,5-Trimethylbenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,3-Dichlorobenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,3-Dichloropropane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
1,4-Dichlorobenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
2,2-Dichloropropane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
2-Butanone	ND		59	µg/Kg-dry	1	1/29/2024 06:45 PM
2-Chlorotoluene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
2-Hexanone	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
4-Chlorotoluene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
4-Methyl-2-pentanone	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Acetone	ND		59	µg/Kg-dry	1	1/29/2024 06:45 PM
Benzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Bromobenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Bromochloromethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Bromodichloromethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Bromoform	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Bromomethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Carbon disulfide	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Carbon tetrachloride	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-1:2-4

Collection Date: 1/24/2024 10:26 AM

Work Order: 24010877

Lab ID: 24010877-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Chloroethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Chloroform	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Chloromethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
cis-1,2-Dichloroethene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
cis-1,3-Dichloropropene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Dibromochloromethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Dibromomethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Dichlorodifluoromethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Ethylbenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Hexachlorobutadiene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Isopropylbenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
m,p-Xylene	ND		12	µg/Kg-dry	1	1/29/2024 06:45 PM
Methyl tert-butyl ether	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Methylene chloride	ND		24	µg/Kg-dry	1	1/29/2024 06:45 PM
Naphthalene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
n-Butylbenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
n-Propylbenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
o-Xylene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
p-Isopropyltoluene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
sec-Butylbenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Styrene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
tert-Butylbenzene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Tetrachloroethene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Toluene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
trans-1,2-Dichloroethene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
trans-1,3-Dichloropropene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Trichloroethene	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Trichlorofluoromethane	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Vinyl chloride	ND		5.9	µg/Kg-dry	1	1/29/2024 06:45 PM
Xylenes, Total	ND		18	µg/Kg-dry	1	1/29/2024 06:45 PM
Surr: 4-Bromofluorobenzene	101		60-140	%REC	1	1/29/2024 06:45 PM
Surr: Dibromofluoromethane	108		60-140	%REC	1	1/29/2024 06:45 PM
Surr: Toluene-d8	99.0		60-140	%REC	1	1/29/2024 06:45 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-2:0-2

Collection Date: 1/24/2024 10:38 AM

Work Order: 24010877

Lab ID: 24010877-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MOISTURE						
Moisture	23			% of sample	1	Analyst: CS 1/29/2024
MERCURY BY CVAA						
Mercury	0.66		0.45	mg/Kg-dry	10	Analyst: SLT 1/31/2024 03:36 PM
METALS BY ICP						
Arsenic	17		1.3	mg/Kg-dry	1	Analyst: JW 1/31/2024 12:52 PM
Barium	180		5.1	mg/Kg-dry	1	1/31/2024 12:52 PM
Cadmium	1.3		0.26	mg/Kg-dry	1	1/31/2024 12:52 PM
Chromium	15		2.6	mg/Kg-dry	1	1/31/2024 12:52 PM
Lead	360		5.1	mg/Kg-dry	1	1/31/2024 12:52 PM
Selenium	ND		0.77	mg/Kg-dry	1	1/31/2024 12:52 PM
Silver	ND		1.3	mg/Kg-dry	1	1/31/2024 12:52 PM
SEMI-VOLATILE ORGANIC COMPOUNDS						
1,2,4,5-Tetrachlorobenzene	ND		430	µg/Kg-dry	1	Analyst: DTL 1/31/2024 08:37 PM
1,2,4-Trichlorobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
1,2-Dichlorobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
1,3-Dichlorobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
1,3-Dinitrobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
1,4-Dichlorobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
1-Methylnaphthalene	ND		260	µg/Kg-dry	1	1/31/2024 08:37 PM
1-Naphthylamine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2,3,4,6-Tetrachlorophenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2,4,5-Trichlorophenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2,4,6-Trichlorophenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2,4-Dichlorophenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2,4-Dimethylphenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2,4-Dinitrophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
2,4-Dinitrotoluene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2,6-Dichlorophenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2,6-Dinitrotoluene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2-Acetylaminofluorene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2-Chloronaphthalene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2-Chlorophenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2-Methylnaphthalene	ND		260	µg/Kg-dry	1	1/31/2024 08:37 PM
2-Methylphenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2-Naphthylamine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
2-Nitroaniline	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
2-Nitrophenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-2:0-2

Collection Date: 1/24/2024 10:38 AM

Work Order: 24010877

Lab ID: 24010877-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
2-Picoline	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
3&4-Methylphenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
3,3'-Dichlorobenzidine	ND		850	µg/Kg-dry	1	1/31/2024 08:37 PM
3-Methylcholanthrene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
3-Nitroaniline	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
4,6-Dinitro-2-methylphenol	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
4-Aminobiphenyl	ND		850	µg/Kg-dry	1	1/31/2024 08:37 PM
4-Bromophenyl phenyl ether	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
4-Chloro-3-methylphenol	ND		850	µg/Kg-dry	1	1/31/2024 08:37 PM
4-Chloroaniline	ND		850	µg/Kg-dry	1	1/31/2024 08:37 PM
4-Chlorophenyl phenyl ether	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
4-Nitroaniline	ND		850	µg/Kg-dry	1	1/31/2024 08:37 PM
4-Nitrophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
4-Nitroquinoline 1-oxide	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
5-Nitro-o-toluidine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
7,12-Dimethylbenz(a)anthracene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Acenaphthene	ND		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Acenaphthylene	ND		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Acetophenone	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Aniline	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Anthracene	430	260	µg/Kg-dry		1	1/31/2024 08:37 PM
Azobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Benzidine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Benzo(a)anthracene	2,000	130	µg/Kg-dry		1	1/31/2024 08:37 PM
Benzo(a)pyrene	2,300	130	µg/Kg-dry		1	1/31/2024 08:37 PM
Benzo(b)fluoranthene	3,400	260	µg/Kg-dry		1	1/31/2024 08:37 PM
Benzo(g,h,i)perylene	1,800	260	µg/Kg-dry		1	1/31/2024 08:37 PM
Benzo(k)fluoranthene	1,000	260	µg/Kg-dry		1	1/31/2024 08:37 PM
Benzyl alcohol	ND		850	µg/Kg-dry	1	1/31/2024 08:37 PM
Bis(2-chloroethoxy)methane	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Bis(2-chloroethyl)ether	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Bis(2-chloroisopropyl)ether	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Bis(2-ethylhexyl)phthalate	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Butyl benzyl phthalate	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Carbazole	ND		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Chrysene	2,300	260	µg/Kg-dry		1	1/31/2024 08:37 PM
Dibenzo(a,h)anthracene	440	130	µg/Kg-dry		1	1/31/2024 08:37 PM
Dibenzofuran	ND		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Diethyl phthalate	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Dimethyl phthalate	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-2:0-2

Collection Date: 1/24/2024 10:38 AM

Work Order: 24010877

Lab ID: 24010877-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Di-n-butyl phthalate	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Di-n-octyl phthalate	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Dinoseb	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Diphenylamine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Ethyl methanesulfonate	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Fluoranthene	4,800		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Fluorene	ND		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Hexachlorobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Hexachlorobutadiene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Hexachlorocyclopentadiene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Hexachloroethane	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Indeno(1,2,3-cd)pyrene	1,600		130	µg/Kg-dry	1	1/31/2024 08:37 PM
Isophorone	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Isosafrole	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Methapyrilene	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
Methyl methanesulfonate	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Naphthalene	ND		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Nitrobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
N-Nitrosodiethylamine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
N-Nitrosodimethylamine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
N-Nitroso-di-n-butylamine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
N-Nitrosodi-n-propylamine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
N-Nitrosomethylamine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
N-Nitrosomorpholine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
N-Nitrosopiperidine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
N-Nitrosopyrrolidine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
o-Toluidine	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
p-Dimethylaminoazobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Pentachlorobenzene	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Pentachloroethane	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Pentachloronitrobenzene	ND		850	µg/Kg-dry	1	1/31/2024 08:37 PM
Pentachlorophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 08:37 PM
Phenacetin	ND		850	µg/Kg-dry	1	1/31/2024 08:37 PM
Phenanthrene	1,900		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Phenol	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Pyrene	3,800		260	µg/Kg-dry	1	1/31/2024 08:37 PM
Pyridine	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
Safrole	ND		430	µg/Kg-dry	1	1/31/2024 08:37 PM
<i>Surr: 2,4,6-Tribromophenol</i>	54.0		14.2-136	%REC	1	1/31/2024 08:37 PM
<i>Surr: 2-Fluorobiphenyl</i>	53.5		30-116	%REC	1	1/31/2024 08:37 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-2:0-2

Collection Date: 1/24/2024 10:38 AM

Work Order: 24010877

Lab ID: 24010877-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorophenol	43.0		5.42-113	%REC	1	1/31/2024 08:37 PM
Surr: 4-Terphenyl-d14	56.3		27.3-138	%REC	1	1/31/2024 08:37 PM
Surr: Nitrobenzene-d5	50.1		23.7-109	%REC	1	1/31/2024 08:37 PM
Surr: Phenol-d6	49.1		24.9-103	%REC	1	1/31/2024 08:37 PM
VOLATILE ORGANIC COMPOUNDS						
			SW8260B			Analyst: SK
1,1,1,2-Tetrachloroethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,1,1-Trichloroethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,1,2,2-Tetrachloroethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,1,2-Trichloroethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,1-Dichloroethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,1-Dichloroethene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,1-Dichloropropene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2,3-Trichlorobenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2,3-Trichloropropane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2,4-Trichlorobenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2,4-Trimethylbenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2-Dibromo-3-chloropropane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2-Dibromoethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2-Dichlorobenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2-Dichloroethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,2-Dichloropropane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,3,5-Trimethylbenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,3-Dichlorobenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,3-Dichloropropane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
1,4-Dichlorobenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
2,2-Dichloropropane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
2-Butanone	ND		65	µg/Kg-dry	1	1/29/2024 07:09 PM
2-Chlorotoluene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
2-Hexanone	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
4-Chlorotoluene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
4-Methyl-2-pentanone	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Acetone	ND		65	µg/Kg-dry	1	1/29/2024 07:09 PM
Benzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Bromobenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Bromochloromethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Bromodichloromethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Bromoform	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Bromomethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Carbon disulfide	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Carbon tetrachloride	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-2:0-2

Collection Date: 1/24/2024 10:38 AM

Work Order: 24010877

Lab ID: 24010877-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Chloroethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Chloroform	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Chloromethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
cis-1,2-Dichloroethene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
cis-1,3-Dichloropropene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Dibromochloromethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Dibromomethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Dichlorodifluoromethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Ethylbenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Hexachlorobutadiene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Isopropylbenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
m,p-Xylene	ND		13	µg/Kg-dry	1	1/29/2024 07:09 PM
Methyl tert-butyl ether	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Methylene chloride	ND		26	µg/Kg-dry	1	1/29/2024 07:09 PM
Naphthalene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
n-Butylbenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
n-Propylbenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
o-Xylene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
p-Isopropyltoluene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
sec-Butylbenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Styrene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
tert-Butylbenzene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Tetrachloroethene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Toluene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
trans-1,2-Dichloroethene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
trans-1,3-Dichloropropene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Trichloroethene	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Trichlorofluoromethane	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Vinyl chloride	ND		6.5	µg/Kg-dry	1	1/29/2024 07:09 PM
Xylenes, Total	ND		19	µg/Kg-dry	1	1/29/2024 07:09 PM
Surr: 4-Bromofluorobenzene	99.6		60-140	%REC	1	1/29/2024 07:09 PM
Surr: Dibromofluoromethane	109		60-140	%REC	1	1/29/2024 07:09 PM
Surr: Toluene-d8	102		60-140	%REC	1	1/29/2024 07:09 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-3:4-6
Collection Date: 1/24/2024 11:12 AM

Work Order: 24010877
Lab ID: 24010877-03
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MOISTURE						
Moisture	17			% of sample	1	Analyst: CS 1/29/2024
MERCURY BY CVAA						
Mercury	0.055		0.042	mg/Kg-dry	1	Analyst: SLT 1/31/2024 02:59 PM
METALS BY ICP						
Arsenic	15		1.2	mg/Kg-dry	1	Analyst: JW 1/31/2024 12:56 PM
Barium	79		4.7	mg/Kg-dry	1	1/31/2024 12:56 PM
Cadmium	0.47		0.24	mg/Kg-dry	1	1/31/2024 12:56 PM
Chromium	11		2.4	mg/Kg-dry	1	1/31/2024 12:56 PM
Lead	38		4.7	mg/Kg-dry	1	1/31/2024 12:56 PM
Selenium	ND		0.71	mg/Kg-dry	1	1/31/2024 12:56 PM
Silver	ND		1.2	mg/Kg-dry	1	1/31/2024 12:56 PM
SEMI-VOLATILE ORGANIC COMPOUNDS						
1,2,4,5-Tetrachlorobenzene	ND		400	µg/Kg-dry	1	Analyst: DTL 1/31/2024 08:55 PM
1,2,4-Trichlorobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
1,2-Dichlorobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
1,3-Dichlorobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
1,3-Dinitrobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
1,4-Dichlorobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
1-Methylnaphthalene	ND		240	µg/Kg-dry	1	1/31/2024 08:55 PM
1-Naphthylamine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2,3,4,6-Tetrachlorophenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2,4,5-Trichlorophenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2,4,6-Trichlorophenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2,4-Dichlorophenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2,4-Dimethylphenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2,4-Dinitrophenol	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
2,4-Dinitrotoluene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2,6-Dichlorophenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2,6-Dinitrotoluene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2-Acetylaminofluorene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2-Chloronaphthalene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2-Chlorophenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2-Methylnaphthalene	ND		240	µg/Kg-dry	1	1/31/2024 08:55 PM
2-Methylphenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2-Naphthylamine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
2-Nitroaniline	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
2-Nitrophenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-3:4-6

Collection Date: 1/24/2024 11:12 AM

Work Order: 24010877

Lab ID: 24010877-03

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
2-Picoline	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
3&4-Methylphenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
3,3'-Dichlorobenzidine	ND		800	µg/Kg-dry	1	1/31/2024 08:55 PM
3-Methylcholanthrene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
3-Nitroaniline	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
4,6-Dinitro-2-methylphenol	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
4-Aminobiphenyl	ND		800	µg/Kg-dry	1	1/31/2024 08:55 PM
4-Bromophenyl phenyl ether	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
4-Chloro-3-methylphenol	ND		800	µg/Kg-dry	1	1/31/2024 08:55 PM
4-Chloroaniline	ND		800	µg/Kg-dry	1	1/31/2024 08:55 PM
4-Chlorophenyl phenyl ether	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
4-Nitroaniline	ND		800	µg/Kg-dry	1	1/31/2024 08:55 PM
4-Nitrophenol	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
4-Nitroquinoline 1-oxide	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
5-Nitro-o-toluidine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
7,12-Dimethylbenz(a)anthracene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Acenaphthene	880	240	µg/Kg-dry		1	1/31/2024 08:55 PM
Acenaphthylene	ND		240	µg/Kg-dry	1	1/31/2024 08:55 PM
Acetophenone	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Aniline	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Anthracene	1,700	240	µg/Kg-dry		1	1/31/2024 08:55 PM
Azobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Benzidine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Benzo(a)anthracene	3,400	120	µg/Kg-dry		1	1/31/2024 08:55 PM
Benzo(a)pyrene	3,200	120	µg/Kg-dry		1	1/31/2024 08:55 PM
Benzo(b)fluoranthene	3,700	240	µg/Kg-dry		1	1/31/2024 08:55 PM
Benzo(g,h,i)perylene	1,600	240	µg/Kg-dry		1	1/31/2024 08:55 PM
Benzo(k)fluoranthene	1,300	240	µg/Kg-dry		1	1/31/2024 08:55 PM
Benzyl alcohol	ND		800	µg/Kg-dry	1	1/31/2024 08:55 PM
Bis(2-chloroethoxy)methane	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Bis(2-chloroethyl)ether	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Bis(2-chloroisopropyl)ether	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Bis(2-ethylhexyl)phthalate	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Butyl benzyl phthalate	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Carbazole	ND		240	µg/Kg-dry	1	1/31/2024 08:55 PM
Chrysene	3,100	240	µg/Kg-dry		1	1/31/2024 08:55 PM
Dibenzo(a,h)anthracene	380	120	µg/Kg-dry		1	1/31/2024 08:55 PM
Dibenzofuran	380	240	µg/Kg-dry		1	1/31/2024 08:55 PM
Diethyl phthalate	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Dimethyl phthalate	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-3:4-6

Collection Date: 1/24/2024 11:12 AM

Work Order: 24010877

Lab ID: 24010877-03

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Di-n-butyl phthalate	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Di-n-octyl phthalate	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Dinoseb	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Diphenylamine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Ethyl methanesulfonate	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Fluoranthene	8,900		2,400	µg/Kg-dry	10	2/2/2024 02:08 PM
Fluorene	550		240	µg/Kg-dry	1	1/31/2024 08:55 PM
Hexachlorobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Hexachlorobutadiene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Hexachlorocyclopentadiene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Hexachloroethane	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Indeno(1,2,3-cd)pyrene	1,500		120	µg/Kg-dry	1	1/31/2024 08:55 PM
Isophorone	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Isosafrole	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Methapyrilene	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
Methyl methanesulfonate	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Naphthalene	ND		240	µg/Kg-dry	1	1/31/2024 08:55 PM
Nitrobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
N-Nitrosodiethylamine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
N-Nitrosodimethylamine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
N-Nitroso-di-n-butylamine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
N-Nitrosodi-n-propylamine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
N-Nitrosomethylamine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
N-Nitrosomorpholine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
N-Nitrosopiperidine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
N-Nitrosopyrrolidine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
o-Toluidine	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
p-Dimethylaminoazobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Pentachlorobenzene	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Pentachloroethane	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Pentachloronitrobenzene	ND		800	µg/Kg-dry	1	1/31/2024 08:55 PM
Pentachlorophenol	ND		2,000	µg/Kg-dry	1	1/31/2024 08:55 PM
Phenacetin	ND		800	µg/Kg-dry	1	1/31/2024 08:55 PM
Phenanthrene	6,700		2,400	µg/Kg-dry	10	2/2/2024 02:08 PM
Phenol	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Pyrene	7,600		2,400	µg/Kg-dry	10	2/2/2024 02:08 PM
Pyridine	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
Safrole	ND		400	µg/Kg-dry	1	1/31/2024 08:55 PM
<i>Surr: 2,4,6-Tribromophenol</i>	64.4		14.2-136	%REC	1	1/31/2024 08:55 PM
<i>Surr: 2-Fluorobiphenyl</i>	63.1		30-116	%REC	1	1/31/2024 08:55 PM

Note:

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-3:4-6
Collection Date: 1/24/2024 11:12 AM

Work Order: 24010877
Lab ID: 24010877-03
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorophenol	63.0		5.42-113	%REC	1	1/31/2024 08:55 PM
Surr: 4-Terphenyl-d14	60.3		27.3-138	%REC	1	1/31/2024 08:55 PM
Surr: Nitrobenzene-d5	62.6		23.7-109	%REC	1	1/31/2024 08:55 PM
Surr: Phenol-d6	65.4		24.9-103	%REC	1	1/31/2024 08:55 PM
VOLATILE ORGANIC COMPOUNDS						
			SW8260B			Analyst: SK
1,1,1,2-Tetrachloroethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,1,1-Trichloroethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,1,2,2-Tetrachloroethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,1,2-Trichloroethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,1-Dichloroethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,1-Dichloroethene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,1-Dichloropropene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2,3-Trichlorobenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2,3-Trichloropropane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2,4-Trichlorobenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2,4-Trimethylbenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2-Dibromo-3-chloropropane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2-Dibromoethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2-Dichlorobenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2-Dichloroethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,2-Dichloropropane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,3,5-Trimethylbenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,3-Dichlorobenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,3-Dichloropropane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
1,4-Dichlorobenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
2,2-Dichloropropane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
2-Butanone	ND		60	µg/Kg-dry	1	1/29/2024 07:33 PM
2-Chlorotoluene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
2-Hexanone	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
4-Chlorotoluene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
4-Methyl-2-pentanone	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Acetone	ND		60	µg/Kg-dry	1	1/29/2024 07:33 PM
Benzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Bromobenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Bromochloromethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Bromodichloromethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Bromoform	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Bromomethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Carbon disulfide	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Carbon tetrachloride	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-3:4-6
Collection Date: 1/24/2024 11:12 AM

Work Order: 24010877
Lab ID: 24010877-03
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Chloroethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Chloroform	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Chloromethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
cis-1,2-Dichloroethene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
cis-1,3-Dichloropropene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Dibromochloromethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Dibromomethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Dichlorodifluoromethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Ethylbenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Hexachlorobutadiene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Isopropylbenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
m,p-Xylene	ND		12	µg/Kg-dry	1	1/29/2024 07:33 PM
Methyl tert-butyl ether	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Methylene chloride	ND		24	µg/Kg-dry	1	1/29/2024 07:33 PM
Naphthalene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
n-Butylbenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
n-Propylbenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
o-Xylene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
p-Isopropyltoluene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
sec-Butylbenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Styrene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
tert-Butylbenzene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Tetrachloroethene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Toluene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
trans-1,2-Dichloroethene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
trans-1,3-Dichloropropene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Trichloroethene	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Trichlorofluoromethane	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Vinyl chloride	ND		6.0	µg/Kg-dry	1	1/29/2024 07:33 PM
Xylenes, Total	ND		18	µg/Kg-dry	1	1/29/2024 07:33 PM
Surr: 4-Bromofluorobenzene	99.0		60-140	%REC	1	1/29/2024 07:33 PM
Surr: Dibromofluoromethane	106		60-140	%REC	1	1/29/2024 07:33 PM
Surr: Toluene-d8	103		60-140	%REC	1	1/29/2024 07:33 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-4:4-6
Collection Date: 1/24/2024 11:27 AM

Work Order: 24010877
Lab ID: 24010877-04
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MOISTURE						
Moisture	20			% of sample	1	Analyst: CS 1/29/2024
MERCURY BY CVAA						
Mercury	0.13		0.044	mg/Kg-dry	1	Analyst: SLT 1/31/2024 03:01 PM
METALS BY ICP						
Arsenic	17		1.2	mg/Kg-dry	1	Analyst: JW 1/31/2024 12:58 PM
Barium	99		5.0	mg/Kg-dry	1	1/31/2024 12:58 PM
Cadmium	1.0		0.25	mg/Kg-dry	1	1/31/2024 12:58 PM
Chromium	8.6		2.5	mg/Kg-dry	1	1/31/2024 12:58 PM
Lead	51		5.0	mg/Kg-dry	1	1/31/2024 12:58 PM
Selenium	ND		0.75	mg/Kg-dry	1	1/31/2024 12:58 PM
Silver	ND		1.2	mg/Kg-dry	1	1/31/2024 12:58 PM
SEMI-VOLATILE ORGANIC COMPOUNDS						
1,2,4,5-Tetrachlorobenzene	ND		410	µg/Kg-dry	1	Analyst: DTL 1/31/2024 09:13 PM
1,2,4-Trichlorobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
1,2-Dichlorobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
1,3-Dichlorobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
1,3-Dinitrobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
1,4-Dichlorobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
1-Methylnaphthalene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
1-Naphthylamine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2,3,4,6-Tetrachlorophenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2,4,5-Trichlorophenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2,4,6-Trichlorophenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2,4-Dichlorophenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2,4-Dimethylphenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2,4-Dinitrophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
2,4-Dinitrotoluene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2,6-Dichlorophenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2,6-Dinitrotoluene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2-Acetylaminofluorene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2-Chloronaphthalene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2-Chlorophenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2-Methylnaphthalene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
2-Methylphenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2-Naphthylamine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
2-Nitroaniline	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
2-Nitrophenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-4:4-6

Collection Date: 1/24/2024 11:27 AM

Work Order: 24010877

Lab ID: 24010877-04

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
2-Picoline	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
3&4-Methylphenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
3,3'-Dichlorobenzidine	ND		830	µg/Kg-dry	1	1/31/2024 09:13 PM
3-Methylcholanthrene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
3-Nitroaniline	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
4,6-Dinitro-2-methylphenol	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
4-Aminobiphenyl	ND		830	µg/Kg-dry	1	1/31/2024 09:13 PM
4-Bromophenyl phenyl ether	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
4-Chloro-3-methylphenol	ND		830	µg/Kg-dry	1	1/31/2024 09:13 PM
4-Chloroaniline	ND		830	µg/Kg-dry	1	1/31/2024 09:13 PM
4-Chlorophenyl phenyl ether	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
4-Nitroaniline	ND		830	µg/Kg-dry	1	1/31/2024 09:13 PM
4-Nitrophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
4-Nitroquinoline 1-oxide	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
5-Nitro-o-toluidine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
7,12-Dimethylbenz(a)anthracene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Acenaphthene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Acenaphthylene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Acetophenone	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Aniline	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Anthracene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Azobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Benzidine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Benzo(a)anthracene	280		130	µg/Kg-dry	1	1/31/2024 09:13 PM
Benzo(a)pyrene	240		130	µg/Kg-dry	1	1/31/2024 09:13 PM
Benzo(b)fluoranthene	330		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Benzo(g,h,i)perylene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Benzo(k)fluoranthene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Benzyl alcohol	ND		830	µg/Kg-dry	1	1/31/2024 09:13 PM
Bis(2-chloroethoxy)methane	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Bis(2-chloroethyl)ether	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Bis(2-chloroisopropyl)ether	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Bis(2-ethylhexyl)phthalate	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Butyl benzyl phthalate	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Carbazole	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Chrysene	260		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Dibenz(a,h)anthracene	ND		130	µg/Kg-dry	1	1/31/2024 09:13 PM
Dibenzofuran	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Diethyl phthalate	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Dimethyl phthalate	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-4:4-6

Collection Date: 1/24/2024 11:27 AM

Work Order: 24010877

Lab ID: 24010877-04

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Di-n-butyl phthalate	1,200		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Di-n-octyl phthalate	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Dinoseb	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Diphenylamine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Ethyl methanesulfonate	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Fluoranthene	560		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Fluorene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Hexachlorobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Hexachlorobutadiene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Hexachlorocyclopentadiene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Hexachloroethane	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Indeno(1,2,3-cd)pyrene	140		130	µg/Kg-dry	1	1/31/2024 09:13 PM
Isophorone	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Isosafrole	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Methapyrilene	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
Methyl methanesulfonate	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Naphthalene	ND		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Nitrobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
N-Nitrosodiethylamine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
N-Nitrosodimethylamine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
N-Nitroso-di-n-butylamine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
N-Nitrosodi-n-propylamine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
N-Nitrosomethylamine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
N-Nitrosomorpholine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
N-Nitrosopiperidine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
N-Nitrosopyrrolidine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
o-Toluidine	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
p-Dimethylaminoazobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Pentachlorobenzene	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Pentachloroethane	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Pentachloronitrobenzene	ND		830	µg/Kg-dry	1	1/31/2024 09:13 PM
Pentachlorophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 09:13 PM
Phenacetin	ND		830	µg/Kg-dry	1	1/31/2024 09:13 PM
Phenanthrene	350		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Phenol	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Pyrene	460		250	µg/Kg-dry	1	1/31/2024 09:13 PM
Pyridine	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
Safrole	ND		410	µg/Kg-dry	1	1/31/2024 09:13 PM
<i>Surr: 2,4,6-Tribromophenol</i>	62.8		14.2-136	%REC	1	1/31/2024 09:13 PM
<i>Surr: 2-Fluorobiphenyl</i>	66.1		30-116	%REC	1	1/31/2024 09:13 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-4:4-6
Collection Date: 1/24/2024 11:27 AM

Work Order: 24010877
Lab ID: 24010877-04
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorophenol	62.2		5.42-113	%REC	1	1/31/2024 09:13 PM
Surr: 4-Terphenyl-d14	63.0		27.3-138	%REC	1	1/31/2024 09:13 PM
Surr: Nitrobenzene-d5	66.4		23.7-109	%REC	1	1/31/2024 09:13 PM
Surr: Phenol-d6	64.5		24.9-103	%REC	1	1/31/2024 09:13 PM
VOLATILE ORGANIC COMPOUNDS						
			SW8260B			Analyst: SK
1,1,1,2-Tetrachloroethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,1,1-Trichloroethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,1,2,2-Tetrachloroethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,1,2-Trichloroethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,1-Dichloroethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,1-Dichloroethene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,1-Dichloropropene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2,3-Trichlorobenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2,3-Trichloropropane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2,4-Trichlorobenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2,4-Trimethylbenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2-Dibromo-3-chloropropane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2-Dibromoethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2-Dichlorobenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2-Dichloroethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,2-Dichloropropane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,3,5-Trimethylbenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,3-Dichlorobenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,3-Dichloropropane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
1,4-Dichlorobenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
2,2-Dichloropropane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
2-Butanone	ND		63	µg/Kg-dry	1	1/29/2024 07:57 PM
2-Chlorotoluene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
2-Hexanone	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
4-Chlorotoluene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
4-Methyl-2-pentanone	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Acetone	ND		63	µg/Kg-dry	1	1/29/2024 07:57 PM
Benzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Bromobenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Bromochloromethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Bromodichloromethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Bromoform	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Bromomethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Carbon disulfide	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Carbon tetrachloride	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-4:4-6

Collection Date: 1/24/2024 11:27 AM

Work Order: 24010877

Lab ID: 24010877-04

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Chloroethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Chloroform	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Chloromethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
cis-1,2-Dichloroethene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
cis-1,3-Dichloropropene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Dibromochloromethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Dibromomethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Dichlorodifluoromethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Ethylbenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Hexachlorobutadiene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Isopropylbenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
m,p-Xylene	ND		13	µg/Kg-dry	1	1/29/2024 07:57 PM
Methyl tert-butyl ether	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Methylene chloride	ND		25	µg/Kg-dry	1	1/29/2024 07:57 PM
Naphthalene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
n-Butylbenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
n-Propylbenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
o-Xylene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
p-Isopropyltoluene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
sec-Butylbenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Styrene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
tert-Butylbenzene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Tetrachloroethene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Toluene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
trans-1,2-Dichloroethene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
trans-1,3-Dichloropropene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Trichloroethene	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Trichlorofluoromethane	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Vinyl chloride	ND		6.3	µg/Kg-dry	1	1/29/2024 07:57 PM
Xylenes, Total	ND		19	µg/Kg-dry	1	1/29/2024 07:57 PM
Surr: 4-Bromofluorobenzene	101		60-140	%REC	1	1/29/2024 07:57 PM
Surr: Dibromofluoromethane	109		60-140	%REC	1	1/29/2024 07:57 PM
Surr: Toluene-d8	101		60-140	%REC	1	1/29/2024 07:57 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-5:0-2

Collection Date: 1/24/2024 11:39 AM

Work Order: 24010877

Lab ID: 24010877-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MOISTURE						
Moisture	21			% of sample	1	Analyst: CS 1/29/2024
MERCURY BY CVAA						
Mercury	0.050		0.044	mg/Kg-dry	1	Analyst: SLT 1/31/2024 03:07 PM
METALS BY ICP						
Arsenic	18		1.2	mg/Kg-dry	1	Analyst: JW 1/31/2024 12:59 PM
Barium	130		4.9	mg/Kg-dry	1	1/31/2024 12:59 PM
Cadmium	1.5		0.25	mg/Kg-dry	1	1/31/2024 12:59 PM
Chromium	11		2.5	mg/Kg-dry	1	1/31/2024 12:59 PM
Lead	98		4.9	mg/Kg-dry	1	1/31/2024 12:59 PM
Selenium	ND		0.74	mg/Kg-dry	1	1/31/2024 12:59 PM
Silver	ND		1.2	mg/Kg-dry	1	1/31/2024 12:59 PM
SEMI-VOLATILE ORGANIC COMPOUNDS						
1,2,4,5-Tetrachlorobenzene	ND		420	µg/Kg-dry	1	Analyst: DTL 1/31/2024 09:30 PM
1,2,4-Trichlorobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
1,2-Dichlorobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
1,3-Dichlorobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
1,3-Dinitrobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
1,4-Dichlorobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
1-Methylnaphthalene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
1-Naphthylamine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2,3,4,6-Tetrachlorophenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2,4,5-Trichlorophenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2,4,6-Trichlorophenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2,4-Dichlorophenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2,4-Dimethylphenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2,4-Dinitrophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
2,4-Dinitrotoluene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2,6-Dichlorophenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2,6-Dinitrotoluene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2-Acetylaminofluorene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2-Chloronaphthalene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2-Chlorophenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2-Methylnaphthalene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
2-Methylphenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2-Naphthylamine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
2-Nitroaniline	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
2-Nitrophenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-5:0-2

Collection Date: 1/24/2024 11:39 AM

Work Order: 24010877

Lab ID: 24010877-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
2-Picoline	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
3&4-Methylphenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
3,3'-Dichlorobenzidine	ND		830	µg/Kg-dry	1	1/31/2024 09:30 PM
3-Methylcholanthrene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
3-Nitroaniline	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
4,6-Dinitro-2-methylphenol	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
4-Aminobiphenyl	ND		830	µg/Kg-dry	1	1/31/2024 09:30 PM
4-Bromophenyl phenyl ether	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
4-Chloro-3-methylphenol	ND		830	µg/Kg-dry	1	1/31/2024 09:30 PM
4-Chloroaniline	ND		830	µg/Kg-dry	1	1/31/2024 09:30 PM
4-Chlorophenyl phenyl ether	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
4-Nitroaniline	ND		830	µg/Kg-dry	1	1/31/2024 09:30 PM
4-Nitrophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
4-Nitroquinoline 1-oxide	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
5-Nitro-o-toluidine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
7,12-Dimethylbenz(a)anthracene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Acenaphthene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Acenaphthylene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Acetophenone	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Aniline	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Anthracene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Azobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Benzidine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Benzo(a)anthracene	290		130	µg/Kg-dry	1	1/31/2024 09:30 PM
Benzo(a)pyrene	310		130	µg/Kg-dry	1	1/31/2024 09:30 PM
Benzo(b)fluoranthene	440		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Benzo(g,h,i)perylene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Benzo(k)fluoranthene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Benzyl alcohol	ND		830	µg/Kg-dry	1	1/31/2024 09:30 PM
Bis(2-chloroethoxy)methane	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Bis(2-chloroethyl)ether	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Bis(2-chloroisopropyl)ether	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Bis(2-ethylhexyl)phthalate	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Butyl benzyl phthalate	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Carbazole	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Chrysene	330		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Dibenz(a,h)anthracene	ND		130	µg/Kg-dry	1	1/31/2024 09:30 PM
Dibenzofuran	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Diethyl phthalate	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Dimethyl phthalate	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-5:0-2

Collection Date: 1/24/2024 11:39 AM

Work Order: 24010877

Lab ID: 24010877-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Di-n-butyl phthalate	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Di-n-octyl phthalate	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Dinoseb	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Diphenylamine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Ethyl methanesulfonate	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Fluoranthene	700		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Fluorene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Hexachlorobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Hexachlorobutadiene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Hexachlorocyclopentadiene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Hexachloroethane	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Indeno(1,2,3-cd)pyrene	180		130	µg/Kg-dry	1	1/31/2024 09:30 PM
Isophorone	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Isosafrole	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Methapyrilene	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
Methyl methanesulfonate	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Naphthalene	ND		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Nitrobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
N-Nitrosodiethylamine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
N-Nitrosodimethylamine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
N-Nitroso-di-n-butylamine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
N-Nitrosodi-n-propylamine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
N-Nitrosomethylamine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
N-Nitrosomorpholine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
N-Nitrosopiperidine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
N-Nitrosopyrrolidine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
o-Toluidine	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
p-Dimethylaminoazobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Pentachlorobenzene	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Pentachloroethane	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Pentachloronitrobenzene	ND		830	µg/Kg-dry	1	1/31/2024 09:30 PM
Pentachlorophenol	ND		2,100	µg/Kg-dry	1	1/31/2024 09:30 PM
Phenacetin	ND		830	µg/Kg-dry	1	1/31/2024 09:30 PM
Phenanthrene	340		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Phenol	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Pyrene	520		250	µg/Kg-dry	1	1/31/2024 09:30 PM
Pyridine	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
Safrole	ND		420	µg/Kg-dry	1	1/31/2024 09:30 PM
<i>Surr: 2,4,6-Tribromophenol</i>	67.1		14.2-136	%REC	1	1/31/2024 09:30 PM
<i>Surr: 2-Fluorobiphenyl</i>	60.6		30-116	%REC	1	1/31/2024 09:30 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-5:0-2
Collection Date: 1/24/2024 11:39 AM

Work Order: 24010877
Lab ID: 24010877-05
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorophenol	62.3		5.42-113	%REC	1	1/31/2024 09:30 PM
Surr: 4-Terphenyl-d14	63.6		27.3-138	%REC	1	1/31/2024 09:30 PM
Surr: Nitrobenzene-d5	61.0		23.7-109	%REC	1	1/31/2024 09:30 PM
Surr: Phenol-d6	62.6		24.9-103	%REC	1	1/31/2024 09:30 PM
VOLATILE ORGANIC COMPOUNDS						
			SW8260B			Analyst: SK
1,1,1,2-Tetrachloroethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,1,1-Trichloroethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,1,2,2-Tetrachloroethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,1,2-Trichloroethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,1-Dichloroethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,1-Dichloroethene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,1-Dichloropropene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2,3-Trichlorobenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2,3-Trichloropropane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2,4-Trichlorobenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2,4-Trimethylbenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2-Dibromo-3-chloropropane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2-Dibromoethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2-Dichlorobenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2-Dichloroethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,2-Dichloropropane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,3,5-Trimethylbenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,3-Dichlorobenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,3-Dichloropropane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
1,4-Dichlorobenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
2,2-Dichloropropane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
2-Butanone	ND		63	µg/Kg-dry	1	1/30/2024 04:27 PM
2-Chlorotoluene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
2-Hexanone	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
4-Chlorotoluene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
4-Methyl-2-pentanone	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Acetone	ND		63	µg/Kg-dry	1	1/30/2024 04:27 PM
Benzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Bromobenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Bromochloromethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Bromodichloromethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Bromoform	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Bromomethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Carbon disulfide	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Carbon tetrachloride	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-5:0-2

Collection Date: 1/24/2024 11:39 AM

Work Order: 24010877

Lab ID: 24010877-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Chloroethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Chloroform	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Chloromethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
cis-1,2-Dichloroethene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
cis-1,3-Dichloropropene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Dibromochloromethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Dibromomethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Dichlorodifluoromethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Ethylbenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Hexachlorobutadiene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Isopropylbenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
m,p-Xylene	ND		13	µg/Kg-dry	1	1/30/2024 04:27 PM
Methyl tert-butyl ether	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Methylene chloride	ND		25	µg/Kg-dry	1	1/30/2024 04:27 PM
Naphthalene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
n-Butylbenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
n-Propylbenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
o-Xylene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
p-Isopropyltoluene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
sec-Butylbenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Styrene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
tert-Butylbenzene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Tetrachloroethene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Toluene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
trans-1,2-Dichloroethene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
trans-1,3-Dichloropropene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Trichloroethene	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Trichlorofluoromethane	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Vinyl chloride	ND		6.3	µg/Kg-dry	1	1/30/2024 04:27 PM
Xylenes, Total	ND		19	µg/Kg-dry	1	1/30/2024 04:27 PM
Surr: 4-Bromofluorobenzene	102		60-140	%REC	1	1/30/2024 04:27 PM
Surr: Dibromofluoromethane	103		60-140	%REC	1	1/30/2024 04:27 PM
Surr: Toluene-d8	106		60-140	%REC	1	1/30/2024 04:27 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-6:4-6
Collection Date: 1/24/2024 12:13 PM

Work Order: 24010877
Lab ID: 24010877-06
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MOISTURE						
Moisture	12			% of sample	1	Analyst: CS 1/29/2024
MERCURY BY CVAA						
Mercury	ND		0.040	mg/Kg-dry	1	Analyst: SLT 1/31/2024 03:09 PM
METALS BY ICP						
Arsenic	20		1.1	mg/Kg-dry	1	Analyst: JW 1/31/2024 01:01 PM
Barium	60		4.4	mg/Kg-dry	1	1/31/2024 01:01 PM
Cadmium	0.44		0.22	mg/Kg-dry	1	1/31/2024 01:01 PM
Chromium	8.8		2.2	mg/Kg-dry	1	1/31/2024 01:01 PM
Lead	26		4.4	mg/Kg-dry	1	1/31/2024 01:01 PM
Selenium	ND		0.67	mg/Kg-dry	1	1/31/2024 01:01 PM
Silver	ND		1.1	mg/Kg-dry	1	1/31/2024 01:01 PM
SEMI-VOLATILE ORGANIC COMPOUNDS						
1,2,4,5-Tetrachlorobenzene	ND		380	µg/Kg-dry	1	Analyst: DTL 1/30/2024 09:39 PM
1,2,4-Trichlorobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
1,2-Dichlorobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
1,3-Dichlorobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
1,3-Dinitrobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
1,4-Dichlorobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
1-Methylnaphthalene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
1-Naphthylamine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2,3,4,6-Tetrachlorophenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2,4,5-Trichlorophenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2,4,6-Trichlorophenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2,4-Dichlorophenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2,4-Dimethylphenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2,4-Dinitrophenol	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
2,4-Dinitrotoluene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2,6-Dichlorophenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2,6-Dinitrotoluene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2-Acetylaminofluorene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2-Chloronaphthalene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2-Chlorophenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2-Methylnaphthalene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
2-Methylphenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2-Naphthylamine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
2-Nitroaniline	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
2-Nitrophenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-6:4-6

Collection Date: 1/24/2024 12:13 PM

Work Order: 24010877

Lab ID: 24010877-06

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
2-Picoline	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
3&4-Methylphenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
3,3'-Dichlorobenzidine	ND		750	µg/Kg-dry	1	1/30/2024 09:39 PM
3-Methylcholanthrene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
3-Nitroaniline	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
4,6-Dinitro-2-methylphenol	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
4-Aminobiphenyl	ND		750	µg/Kg-dry	1	1/30/2024 09:39 PM
4-Bromophenyl phenyl ether	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
4-Chloro-3-methylphenol	ND		750	µg/Kg-dry	1	1/30/2024 09:39 PM
4-Chloroaniline	ND		750	µg/Kg-dry	1	1/30/2024 09:39 PM
4-Chlorophenyl phenyl ether	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
4-Nitroaniline	ND		750	µg/Kg-dry	1	1/30/2024 09:39 PM
4-Nitrophenol	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
4-Nitroquinoline 1-oxide	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
5-Nitro-o-toluidine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
7,12-Dimethylbenz(a)anthracene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Acenaphthene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Acenaphthylene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Acetophenone	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Aniline	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Anthracene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Azobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Benzidine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Benzo(a)anthracene	ND		110	µg/Kg-dry	1	1/30/2024 09:39 PM
Benzo(a)pyrene	ND		110	µg/Kg-dry	1	1/30/2024 09:39 PM
Benzo(b)fluoranthene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Benzo(g,h,i)perylene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Benzo(k)fluoranthene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Benzyl alcohol	ND		750	µg/Kg-dry	1	1/30/2024 09:39 PM
Bis(2-chloroethoxy)methane	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Bis(2-chloroethyl)ether	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Bis(2-chloroisopropyl)ether	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Bis(2-ethylhexyl)phthalate	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Butyl benzyl phthalate	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Carbazole	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Chrysene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Dibenz(a,h)anthracene	ND		110	µg/Kg-dry	1	1/30/2024 09:39 PM
Dibenzofuran	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Diethyl phthalate	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Dimethyl phthalate	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC

Project: 948 Ferndale Place

Sample ID: 948 Ferndale:SB-6:4-6

Collection Date: 1/24/2024 12:13 PM

Work Order: 24010877

Lab ID: 24010877-06

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Di-n-butyl phthalate	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Di-n-octyl phthalate	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Dinoseb	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Diphenylamine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Ethyl methanesulfonate	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Fluoranthene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Fluorene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Hexachlorobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Hexachlorobutadiene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Hexachlorocyclopentadiene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Hexachloroethane	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Indeno(1,2,3-cd)pyrene	ND		110	µg/Kg-dry	1	1/30/2024 09:39 PM
Isophorone	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Isosafrole	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Methapyrilene	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
Methyl methanesulfonate	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Naphthalene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Nitrobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
N-Nitrosodiethylamine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
N-Nitrosodimethylamine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
N-Nitroso-di-n-butylamine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
N-Nitrosodi-n-propylamine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
N-Nitrosomethylalkylamine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
N-Nitrosomorpholine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
N-Nitrosopiperidine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
N-Nitrosopyrrolidine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
o-Toluidine	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
p-Dimethylaminoazobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Pentachlorobenzene	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Pentachloroethane	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Pentachloronitrobenzene	ND		750	µg/Kg-dry	1	1/30/2024 09:39 PM
Pentachlorophenol	ND		1,900	µg/Kg-dry	1	1/30/2024 09:39 PM
Phenacetin	ND		750	µg/Kg-dry	1	1/30/2024 09:39 PM
Phenanthrene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Phenol	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Pyrene	ND		230	µg/Kg-dry	1	1/30/2024 09:39 PM
Pyridine	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Safrole	ND		380	µg/Kg-dry	1	1/30/2024 09:39 PM
Surr: 2,4,6-Tribromophenol	64.5		14.2-136	%REC	1	1/30/2024 09:39 PM
Surr: 2-Fluorobiphenyl	64.5		30-116	%REC	1	1/30/2024 09:39 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-6:4-6
Collection Date: 1/24/2024 12:13 PM

Work Order: 24010877
Lab ID: 24010877-06
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorophenol	66.2		5.42-113	%REC	1	1/30/2024 09:39 PM
Surr: 4-Terphenyl-d14	65.7		27.3-138	%REC	1	1/30/2024 09:39 PM
Surr: Nitrobenzene-d5	68.6		23.7-109	%REC	1	1/30/2024 09:39 PM
Surr: Phenol-d6	70.1		24.9-103	%REC	1	1/30/2024 09:39 PM
VOLATILE ORGANIC COMPOUNDS						
			SW8260B			Analyst: SK
1,1,1,2-Tetrachloroethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,1,1-Trichloroethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,1,2,2-Tetrachloroethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,1,2-Trichloroethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,1-Dichloroethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,1-Dichloroethene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,1-Dichloropropene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2,3-Trichlorobenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2,3-Trichloropropane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2,4-Trichlorobenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2,4-Trimethylbenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2-Dibromo-3-chloropropane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2-Dibromoethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2-Dichlorobenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2-Dichloroethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,2-Dichloropropane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,3,5-Trimethylbenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,3-Dichlorobenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,3-Dichloropropane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
1,4-Dichlorobenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
2,2-Dichloropropane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
2-Butanone	ND		57	µg/Kg-dry	1	1/30/2024 04:50 PM
2-Chlorotoluene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
2-Hexanone	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
4-Chlorotoluene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
4-Methyl-2-pentanone	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Acetone	ND		57	µg/Kg-dry	1	1/30/2024 04:50 PM
Benzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Bromobenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Bromochloromethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Bromodichloromethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Bromoform	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Bromomethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Carbon disulfide	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Carbon tetrachloride	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM

Note:

ALS Environmental

Date: 02-Feb-24

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
Sample ID: 948 Ferndale:SB-6:4-6
Collection Date: 1/24/2024 12:13 PM

Work Order: 24010877
Lab ID: 24010877-06
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Chloroethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Chloroform	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Chloromethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
cis-1,2-Dichloroethene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
cis-1,3-Dichloropropene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Dibromochloromethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Dibromomethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Dichlorodifluoromethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Ethylbenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Hexachlorobutadiene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Isopropylbenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
m,p-Xylene	ND		11	µg/Kg-dry	1	1/30/2024 04:50 PM
Methyl tert-butyl ether	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Methylene chloride	ND		23	µg/Kg-dry	1	1/30/2024 04:50 PM
Naphthalene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
n-Butylbenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
n-Propylbenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
o-Xylene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
p-Isopropyltoluene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
sec-Butylbenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Styrene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
tert-Butylbenzene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Tetrachloroethene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Toluene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
trans-1,2-Dichloroethene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
trans-1,3-Dichloropropene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Trichloroethene	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Trichlorofluoromethane	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Vinyl chloride	ND		5.7	µg/Kg-dry	1	1/30/2024 04:50 PM
Xylenes, Total	ND		17	µg/Kg-dry	1	1/30/2024 04:50 PM
Surr: 4-Bromofluorobenzene	101		60-140	%REC	1	1/30/2024 04:50 PM
Surr: Dibromofluoromethane	106		60-140	%REC	1	1/30/2024 04:50 PM
Surr: Toluene-d8	105		60-140	%REC	1	1/30/2024 04:50 PM

Note:

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: 96541		Instrument ID HG2		Method: SW7471A											
MBLK		Sample ID: MBLK-96541-96541			Units: mg/Kg		Analysis Date: 1/31/2024 02:27 PM								
Client ID:		Run ID: HG2_240131C			SeqNo: 3289664		Prep Date: 1/31/2024		DF: 1						
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual			
Mercury		ND		0.30											
LCS		Sample ID: LCS-96541-96541			Units: mg/Kg		Analysis Date: 1/31/2024 02:29 PM								
Client ID:		Run ID: HG2_240131C			SeqNo: 3289665		Prep Date: 1/31/2024		DF: 1						
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual			
Mercury		0.8117		0.30	0.833	0	97.4	53.5-113	0						
LCSD		Sample ID: LCSD-96541-96541			Units: mg/Kg		Analysis Date: 1/31/2024 02:31 PM								
Client ID:		Run ID: HG2_240131C			SeqNo: 3289666		Prep Date: 1/31/2024		DF: 1						
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual			
Mercury		0.8517		0.30	0.833	0	102	53.5-113	0.8117	4.81	20				
MS		Sample ID: 24010878-05C MS			Units: mg/Kg		Analysis Date: 1/31/2024 03:43 PM								
Client ID:		Run ID: HG2_240131C			SeqNo: 3289689		Prep Date: 1/31/2024		DF: 10						
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual			
Mercury		0.2244		0.36	0.09925	0.1694	55.4	69-147	0						
MSD		Sample ID: 24010878-05C MSD			Units: mg/Kg		Analysis Date: 1/31/2024 03:24 PM								
Client ID:		Run ID: HG2_240131C			SeqNo: 3289684		Prep Date: 1/31/2024		DF: 1						
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual			
Mercury		0.1807		0.036	0.0998	0.1694	11.3	69-147	0.2244	21.6	20	SR			

The following samples were analyzed in this batch:

24010877-01C	24010877-02C	24010877-03C
24010877-04C	24010877-05C	24010877-06C

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **96540** Instrument ID **ICP4** Method: **SW6010B**

MLK				Sample ID: MLK-96540-96540			Units: mg/Kg		Analysis Date: 1/31/2024 12:38 PM		
Client ID:		Run ID: ICP4_240131B		SeqNo: 3289338		Prep Date: 1/31/2024		DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Arsenic	ND	5.0									
Barium	ND	20									
Cadmium	ND	1.0									
Chromium	ND	10									
Lead	ND	20									
Selenium	ND	3.0									
Silver	ND	5.0									
LCS				Sample ID: LCS-96540-96540			Units: mg/Kg		Analysis Date: 1/31/2024 12:39 PM		
Client ID:		Run ID: ICP4_240131B		SeqNo: 3289339		Prep Date: 1/31/2024		DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Arsenic	92.49	5.0	100	0	92.5	49.7-118		0			
Barium	98.97	20	100	0	99	81.6-112		0			
Cadmium	97	1.0	100	0	97	87.2-119		0			
Chromium	95.78	10	100	0	95.8	81.7-123		0			
Lead	92.18	20	100	0	92.2	82.9-117		0			
Selenium	94.7	3.0	100	0	94.7	86.2-110		0			
Silver	91.76	5.0	100	0	91.8	77.1-118		0			
LCSD				Sample ID: LCSD-96540-96540			Units: mg/Kg		Analysis Date: 1/31/2024 12:41 PM		
Client ID:		Run ID: ICP4_240131B		SeqNo: 3289340		Prep Date: 1/31/2024		DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Arsenic	92.27	5.0	100	0	92.3	79.7-118	92.49	0.238	20		
Barium	99.1	20	100	0	99.1	81.6-112	98.97	0.131	20		
Cadmium	96	1.0	100	0	96	87.2-119		97	1.04	20	
Chromium	95.61	10	100	0	95.6	81.7-123	95.78	0.178	20		
Lead	91.64	20	100	0	91.6	82.9-117	92.18	0.588	20		
Selenium	93.63	3.0	100	0	93.6	86.2-110	94.7	1.14	20		
Silver	91.2	5.0	100	0	91.2	77.1-118	91.76	0.612	20		
MS				Sample ID: 24010898-04B MS			Units: mg/Kg		Analysis Date: 1/31/2024 01:20 PM		
Client ID:		Run ID: ICP4_240131B		SeqNo: 3289361		Prep Date: 1/31/2024		DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Lead	31.54	4.0	19.79	18.02	68.3	69.3-107		0		S	

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **96540** Instrument ID **ICP4** Method: **SW6010B**

MSD		Sample ID: 24010898-04B MSD			Units: mg/Kg		Analysis Date: 1/31/2024 01:21 PM			
Client ID:		Run ID: ICP4_240131B			SeqNo: 3289362	Prep Date: 1/31/2024	DF: 1			
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual	
Lead		31.61	3.9	19.38	18.02	70.1	69.3-107	31.54	0.219	20

The following samples were analyzed in this batch:

24010877-01C	24010877-02C	24010877-03C
24010877-04C	24010877-05C	24010877-06C

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **96481** Instrument ID **SVMS2** Method: **SW8270C**

MLBK			Sample ID: MLBK-96481-96481		Units: µg/Kg		Analysis Date: 1/30/2024 06:24 PM			
Client ID:	Run ID:	SeqNo:	3288972	Prep Date:	1/29/2024	DF:	1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4,5-Tetrachlorobenzene	ND	330								
1,2,4-Trichlorobenzene	ND	330								
1,2-Dichlorobenzene	ND	330								
1,3-Dichlorobenzene	ND	330								
1,3-Dinitrobenzene	ND	330								
1,4-Dichlorobenzene	ND	330								
1-Methylnaphthalene	ND	200								
1-Naphthylamine	ND	330								
2,3,4,6-Tetrachlorophenol	ND	330								
2,4,5-Trichlorophenol	ND	330								
2,4,6-Trichlorophenol	ND	330								
2,4-Dichlorophenol	ND	330								
2,4-Dimethylphenol	ND	330								
2,4-Dinitrophenol	58.27	1,600								J
2,4-Dinitrotoluene	ND	330								
2,6-Dichlorophenol	ND	330								
2,6-Dinitrotoluene	ND	330								
2-Acetylaminofluorene	ND	330								
2-Chloronaphthalene	ND	330								
2-Chlorophenol	ND	330								
2-Methylnaphthalene	ND	200								
2-Methylphenol	ND	330								
2-Naphthylamine	ND	330								
2-Nitroaniline	ND	1,600								
2-Nitrophenol	ND	330								
2-Picoline	ND	330								
3&4-Methylphenol	ND	330								
3,3'-Dichlorobenzidine	ND	660								
3-Methylcholanthrene	ND	330								
3-Nitroaniline	ND	1,600								
4,6-Dinitro-2-methylphenol	47	1,600								J
4-Aminobiphenyl	ND	660								
4-Bromophenyl phenyl ether	ND	330								
4-Chloro-3-methylphenol	ND	660								
4-Chloroaniline	ND	660								
4-Chlorophenyl phenyl ether	ND	330								
4-Nitroaniline	ND	660								
4-Nitrophenol	41.67	1,600								J
4-Nitroquinoline 1-oxide	ND	1,600								
5-Nitro-o-toluidine	ND	330								
7,12-Dimethylbenz(a)anthracene	ND	330								
Acenaphthene	ND	200								

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: 96481	Instrument ID SVMS2	Method: SW8270C
Acenaphthylene	ND	200
Acetophenone	ND	330
Aniline	ND	330
Anthracene	ND	200
Azobenzene	ND	330
Benzidine	ND	330
Benzo(a)anthracene	ND	100
Benzo(a)pyrene	ND	100
Benzo(b)fluoranthene	ND	200
Benzo(g,h,i)perylene	ND	200
Benzo(k)fluoranthene	ND	200
Benzyl alcohol	ND	660
Bis(2-chloroethoxy)methane	ND	330
Bis(2-chloroethyl)ether	22.4	330
Bis(2-chloroisopropyl)ether	ND	330
Bis(2-ethylhexyl)phthalate	ND	330
Butyl benzyl phthalate	ND	330
Carbazole	ND	200
Chrysene	ND	200
Dibenzo(a,h)anthracene	ND	100
Dibenzofuran	ND	200
Diethyl phthalate	ND	330
Dimethyl phthalate	ND	330
Di-n-butyl phthalate	ND	330
Di-n-octyl phthalate	ND	330
Dinoseb	ND	330
Diphenylamine	ND	330
Ethyl methanesulfonate	ND	330
Fluoranthene	ND	200
Fluorene	ND	200
Hexachlorobenzene	ND	330
Hexachlorobutadiene	ND	330
Hexachlorocyclopentadiene	ND	330
Hexachloroethane	ND	330
Indeno(1,2,3-cd)pyrene	ND	100
Isophorone	ND	330
Isosafrole	ND	330
Methapyrilene	ND	1,600
Methyl methanesulfonate	ND	330
Naphthalene	ND	200
Nitrobenzene	44.4	330
N-Nitrosodiethylamine	ND	330
N-Nitrosodimethylamine	ND	330
N-Nitroso-di-n-butylamine	ND	330
N-Nitrosodi-n-propylamine	ND	330
N-Nitrosomethylamine	ND	330
N-Nitrosomorpholine	ND	330
N-Nitrosopiperidine	ND	330

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: 96481	Instrument ID SVMS2	Method: SW8270C				
N-Nitrosopyrrolidine	ND	330				
o-Toluidine	ND	1,600				
p-Dimethylaminoazobenzene	ND	330				
Pentachlorobenzene	ND	330				
Pentachloroethane	ND	330				
Pentachloronitrobenzene	ND	660				
Pentachlorophenol	41.27	1,600				J
Phenacetin	ND	660				
Phenanthrene	ND	200				
Phenol	ND	330				
Pyrene	ND	200				
Pyridine	ND	330				
Safrole	ND	330				
<i>Surr: 2,4,6-Tribromophenol</i>	5081	0	6660	0	76.3	14.2-136
<i>Surr: 2-Fluorobiphenyl</i>	2411	0	3330	0	72.4	30-116
<i>Surr: 2-Fluorophenol</i>	5477	0	6660	0	82.2	5.42-113
<i>Surr: 4-Terphenyl-d14</i>	2402	0	3330	0	72.1	27.3-138
<i>Surr: Nitrobenzene-d5</i>	2608	0	3330	0	78.3	23.7-109
<i>Surr: Phenol-d6</i>	5514	0	6660	0	82.8	24.9-103

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **96481** Instrument ID **SVMS2** Method: **SW8270C**

LCS	Sample ID: LCS-96481-96481			Units: µg/Kg			Analysis Date: 1/30/2024 06:42 PM			
Client ID:	Run ID: SVMS2_240130A			SeqNo: 3288973			Prep Date: 1/29/2024			DF: 1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4-Trichlorobenzene	2399	330	3330	0	72.1	39-104	0	0		
1,4-Dichlorobenzene	2284	330	3330	0	68.6	38.7-95.1	0	0		
2,4-Dinitrotoluene	2377	330	3330	0	71.4	52.4-99.5	0	0		
2-Chlorophenol	2246	330	3330	0	67.4	34.7-116	0	0		
4-Chloro-3-methylphenol	2340	660	3330	0	70.3	32.1-109	0	0		
4-Nitrophenol	2474	1,600	3330	0	74.3	36.2-146	0	0		
Acenaphthene	2325	200	3330	0	69.8	52-119	0	0		
Acenaphthylene	2369	200	3330	0	71.1	46-118	0	0		
Anthracene	2447	200	3330	0	73.5	56-109	0	0		
Benzo(a)anthracene	2522	100	3330	0	75.7	48-121	0	0		
Benzo(a)pyrene	2552	100	3330	0	76.6	40.1-114	0	0		
Benzo(b)fluoranthene	2560	200	3330	0	76.9	44-115	0	0		
Benzo(g,h,i)perylene	2527	200	3330	0	75.9	47.9-113	0	0		
Benzo(k)fluoranthene	2587	200	3330	0	77.7	39.5-116	0	0		
Carbazole	2496	200	3330	0	75	43.3-146	0	0		
Chrysene	2546	200	3330	0	76.5	49.2-115	0	0		
Dibenzo(a,h)anthracene	2609	100	3330	0	78.3	41.7-123	0	0		
Fluoranthene	2547	200	3330	0	76.5	52.7-118	0	0		
Fluorene	2474	200	3330	0	74.3	56.3-106	0	0		
Indeno(1,2,3-cd)pyrene	2704	100	3330	0	81.2	41.1-124	0	0		
N-Nitrosodi-n-propylamine	1511	330	3330	0	45.4	25.3-127	0	0		
Pentachlorophenol	2407	1,600	3330	0	72.3	22.1-105	0	0		
Phenanthrene	2437	200	3330	0	73.2	52.8-114	0	0		
Phenol	2281	330	3330	0	68.5	36.9-97.8	0	0		
Pyrene	2515	200	3330	0	75.5	50.7-109	0	0		
<i>Surr: 2,4,6-Tribromophenol</i>	4741	0	6660	0	71.2	14.2-136	0	0		
<i>Surr: 2-Fluorobiphenyl</i>	2321	0	3330	0	69.7	30-116	0	0		
<i>Surr: 2-Fluorophenol</i>	4416	0	6660	0	66.3	5.42-113	0	0		
<i>Surr: 4-Terphenyl-d14</i>	2311	0	3330	0	69.4	27.3-138	0	0		
<i>Surr: Nitrobenzene-d5</i>	2329	0	3330	0	69.9	23.7-109	0	0		
<i>Surr: Phenol-d6</i>	4538	0	6660	0	68.1	24.9-103	0	0		

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **96481** Instrument ID **SVMS2** Method: **SW8270C**

MS	Sample ID: 24010807-06BMS			Units: µg/Kg		Analysis Date: 1/30/2024 06:59 PM				
Client ID:	Run ID: SVMS2_240130A			SeqNo: 3288974		Prep Date: 1/29/2024		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4-Trichlorobenzene	2254	330	3328	0	67.7	39-91.8		0		
1,4-Dichlorobenzene	1628	330	3328	0	48.9	32.9-90		0		
2,4-Dinitrotoluene	2211	330	3328	0	66.4	29.7-121		0		
2-Chlorophenol	1592	330	3328	0	47.8	33.3-109		0		
4-Chloro-3-methylphenol	2243	660	3328	0	67.4	35.8-116		0		
4-Nitrophenol	2132	1,600	3328	38.07	62.9	34.1-120		0		
Acenaphthene	2273	200	3328	0	68.3	44-108		0		
Acenaphthylene	2280	200	3328	0	68.5	43.6-110		0		
Anthracene	2315	200	3328	0	69.6	35.8-104		0		
Benzo(a)anthracene	2387	100	3328	0	71.7	47-114		0		
Benzo(a)pyrene	2453	100	3328	0	73.7	43.8-115		0		
Benzo(b)fluoranthene	2365	200	3328	0	71.1	40-106		0		
Benzo(g,h,i)perylene	2429	200	3328	0	73	38.2-110		0		
Benzo(k)fluoranthene	2511	200	3328	0	75.4	48.6-107		0		
Carbazole	2241	200	3328	0	67.3	28.5-114		0		
Chrysene	2433	200	3328	0	73.1	44.3-97.5		0		
Dibenzo(a,h)anthracene	2458	100	3328	0	73.8	46-116		0		
Fluoranthene	2404	200	3328	0	72.2	40.2-129		0		
Fluorene	2331	200	3328	0	70	42.8-106		0		
Indeno(1,2,3-cd)pyrene	2572	100	3328	0	77.3	33-115		0		
Naphthalene	2284	200	3328	166.9	63.6	18.2-126		0		
N-Nitrosodi-n-propylamine	1114	330	3328	0	33.5	3.32-83.9		0		
Pentachlorophenol	2245	1,600	3328	41.27	66.2	9.31-107		0		
Phenanthrene	2328	200	3328	0	69.9	31.2-127		0		
Phenol	1635	330	3328	27.67	48.3	25.9-90.3		0		
Pyrene	2400	200	3328	0	72.1	33.7-129		0		
<i>Surr: 2,4,6-Tribromophenol</i>	9301	0	13310	0	69.9	14.2-136		0		
<i>Surr: 2-Fluorobiphenyl</i>	4519	0	6656	0	67.9	30-116		0		
<i>Surr: 2-Fluorophenol</i>	6496	0	13310	0	48.8	5.42-113		0		
<i>Surr: 4-Terphenyl-d14</i>	4499	0	6656	0	67.6	27.3-138		0		
<i>Surr: Nitrobenzene-d5</i>	3320	0	6656	0	49.9	23.7-109		0		
<i>Surr: Phenol-d6</i>	6613	0	13310	0	49.7	24.9-103		0		

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **96481** Instrument ID **SVMS2** Method: **SW8270C**

MSD	Sample ID: 24010807-06BMSD			Units: µg/Kg			Analysis Date: 1/30/2024 07:17 PM		
	Client ID:	Run ID: SVMS2_240130A		SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit
Analyte	Result	PQL	SPK Val						Qual
1,2,4-Trichlorobenzene	2316	330	3334	0	69.5	39-91.8	2254	2.73	
1,4-Dichlorobenzene	2256	330	3334	0	67.7	32.9-90	1628	32.3	
2,4-Dinitrotoluene	2396	330	3334	0	71.9	29.7-121	2211	8.04	
2-Chlorophenol	2225	330	3334	0	66.7	33.3-109	1592	33.1	
4-Chloro-3-methylphenol	2364	660	3334	0	70.9	35.8-116	2243	5.24	
4-Nitrophenol	2262	1,700	3334	38.07	66.7	34.1-120	2132	5.89	
Acenaphthene	2377	200	3334	0	71.3	44-108	2273	4.46	
Acenaphthylene	2420	200	3334	0	72.6	43.6-110	2280	5.97	
Anthracene	2395	200	3334	0	71.8	35.8-104	2315	3.4	
Benzo(a)anthracene	2532	100	3334	0	75.9	47-114	2387	5.92	
Benzo(a)pyrene	2497	100	3334	0	74.9	43.8-115	2453	1.76	
Benzo(b)fluoranthene	2510	200	3334	0	75.3	40-106	2365	5.96	
Benzo(g,h,i)perylene	2458	200	3334	0	73.7	38.2-110	2429	1.22	
Benzo(k)fluoranthene	2599	200	3334	0	77.9	48.6-107	2511	3.46	
Carbazole	2265	200	3334	0	67.9	28.5-114	2241	1.06	
Chrysene	2540	200	3334	0	76.2	44.3-97.5	2433	4.28	
Dibenzo(a,h)anthracene	2526	100	3334	0	75.8	46-116	2458	2.76	
Fluoranthene	2498	200	3334	0	74.9	40.2-129	2404	3.84	
Fluorene	2510	200	3334	0	75.3	42.8-106	2331	7.39	
Indeno(1,2,3-cd)pyrene	2614	100	3334	0	78.4	33-115	2572	1.62	
Naphthalene	2401	200	3334	166.9	67	18.2-126	2284	4.99	
N-Nitrosodi-n-propylamine	1492	330	3334	0	44.7	3.32-83.9	1114	29	
Pentachlorophenol	2349	1,700	3334	41.27	69.2	9.31-107	2245	4.49	
Phenanthrene	2437	200	3334	0	73.1	31.2-127	2328	4.58	
Phenol	2242	330	3334	27.67	66.4	25.9-90.3	1635	31.3	
Pyrene	2469	200	3334	0	74	33.7-129	2400	2.81	
<i>Surr: 2,4,6-Tribromophenol</i>	4855	0	6669	0	72.8	14.2-136	9301	62.8	
<i>Surr: 2-Fluorobiphenyl</i>	2358	0	3334	0	70.7	30-116	4519	62.9	
<i>Surr: 2-Fluorophenol</i>	4379	0	6669	0	65.7	5.42-113	6496	38.9	
<i>Surr: 4-Terphenyl-d14</i>	2281	0	3334	0	68.4	27.3-138	4499	65.4	
<i>Surr: Nitrobenzene-d5</i>	2321	0	3334	0	69.6	23.7-109	3320	35.4	
<i>Surr: Phenol-d6</i>	4563	0	6669	0	68.4	24.9-103	6613	36.7	

The following samples were analyzed in this batch:

24010877-01B	24010877-02B	24010877-03B
24010877-04B	24010877-05B	24010877-06B

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **R225642** Instrument ID **VMS2** Method: **SW8260B**

MLBK	Sample ID: MLKR-R225642		Units: µg/Kg		Analysis Date: 1/29/2024 04:22 PM				
Client ID:	Run ID: VMS2_240129A		SeqNo: 3287707		Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD Limit	Qual
1,1,1,2-Tetrachloroethane	ND	5.0							
1,1,1-Trichloroethane	ND	5.0							
1,1,2,2-Tetrachloroethane	ND	5.0							
1,1,2-Trichloroethane	ND	5.0							
1,1-Dichloroethane	ND	5.0							
1,1-Dichloroethene	ND	5.0							
1,1-Dichloropropene	ND	5.0							
1,2,3-Trichlorobenzene	ND	5.0							
1,2,3-Trichloropropane	ND	5.0							
1,2,4-Trichlorobenzene	ND	5.0							
1,2,4-Trimethylbenzene	ND	5.0							
1,2-Dibromo-3-chloropropane	ND	5.0							
1,2-Dibromoethane	ND	5.0							
1,2-Dichlorobenzene	ND	5.0							
1,2-Dichloroethane	ND	5.0							
1,2-Dichloropropane	ND	5.0							
1,3,5-Trimethylbenzene	ND	5.0							
1,3-Dichlorobenzene	ND	5.0							
1,3-Dichloropropane	ND	5.0							
1,4-Dichlorobenzene	ND	5.0							
2,2-Dichloropropane	ND	5.0							
2-Butanone	ND	50							
2-Chlorotoluene	ND	5.0							
2-Hexanone	ND	5.0							
4-Chlorotoluene	ND	5.0							
4-Methyl-2-pentanone	ND	5.0							
Acetone	ND	50							
Benzene	ND	5.0							
Bromobenzene	ND	5.0							
Bromochloromethane	ND	5.0							
Bromodichloromethane	ND	5.0							
Bromoform	ND	5.0							
Bromomethane	ND	5.0							
Carbon disulfide	ND	5.0							
Carbon tetrachloride	ND	5.0							
Chlorobenzene	ND	5.0							
Chloroethane	ND	5.0							
Chloroform	ND	5.0							
Chloromethane	ND	5.0							
cis-1,2-Dichloroethene	ND	5.0							
cis-1,3-Dichloropropene	ND	5.0							
Dibromochloromethane	ND	5.0							

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: R225642	Instrument ID VMS2	Method: SW8260B					
Dibromomethane	ND	5.0					
Dichlorodifluoromethane	ND	5.0					
Ethylbenzene	ND	5.0					
Hexachlorobutadiene	ND	5.0					
Isopropylbenzene	ND	5.0					
m,p-Xylene	ND	10					
Methyl tert-butyl ether	ND	5.0					
Methylene chloride	ND	20					
Naphthalene	ND	5.0					
n-Butylbenzene	ND	5.0					
n-Propylbenzene	ND	5.0					
o-Xylene	ND	5.0					
p-Isopropyltoluene	ND	5.0					
sec-Butylbenzene	ND	5.0					
Styrene	ND	5.0					
tert-Butylbenzene	ND	5.0					
Tetrachloroethene	ND	5.0					
Toluene	ND	5.0					
trans-1,2-Dichloroethene	ND	5.0					
trans-1,3-Dichloropropene	ND	5.0					
Trichloroethene	ND	5.0					
Trichlorofluoromethane	ND	5.0					
Vinyl chloride	ND	5.0					
Xylenes, Total	ND	15					
<i>Surr: 4-Bromofluorobenzene</i>	50.5	0	50	0	101	60-140	0
<i>Surr: Dibromofluoromethane</i>	50.48	0	50	0	101	60-140	0
<i>Surr: Toluene-d8</i>	50.06	0	50	0	100	60-140	0

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **R225642** Instrument ID **VMS2** Method: **SW8260B**

LCS		Sample ID: LCSR-R225642			Units: µg/Kg		Analysis Date: 1/29/2024 03:13 PM			
Client ID:		Run ID: VMS2_240129A			SeqNo: 3287705		Prep Date:	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	46.8	5.0	50	0	93.6	53.6-149		0		
1,1-Dichloroethene	42.9	5.0	50	0	85.8	38.8-176		0		
1,2-Dichloroethane	48.96	5.0	50	0	97.9	54.4-145		0		
1,3-Dichlorobenzene	51.67	5.0	50	0	103	58.4-144		0		
1,4-Dichlorobenzene	51.29	5.0	50	0	103	55.3-144		0		
Benzene	46.76	5.0	50	0	93.5	56-148		0		
Carbon tetrachloride	48.79	5.0	50	0	97.6	51.9-151		0		
Chlorobenzene	49.46	5.0	50	0	98.9	55.4-137		0		
Chloroform	47.6	5.0	50	0	95.2	51.1-147		0		
cis-1,2-Dichloroethene	49.02	5.0	50	0	98	47.6-149		0		
Ethylbenzene	48.32	5.0	50	0	96.6	55.8-142		0		
m,p-Xylene	95.95	10	100	0	96	57.6-141		0		
Styrene	48.08	5.0	50	0	96.2	59.6-143		0		
Tetrachloroethene	37.65	5.0	50	0	75.3	35.6-132		0		
Toluene	48.06	5.0	50	0	96.1	56-143		0		
Trichloroethene	47.87	5.0	50	0	95.7	56.5-143		0		
<i>Surr: 4-Bromofluorobenzene</i>	49.8	0	50	0	99.6	60-140		0		
<i>Surr: Dibromofluoromethane</i>	47.99	0	50	0	96	60-140		0		
<i>Surr: Toluene-d8</i>	50.29	0	50	0	101	60-140		0		

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **R225642** Instrument ID **VMS2** Method: **SW8260B**

MS	Sample ID: 24010773-01 MS			Units: µg/Kg			Analysis Date: 1/29/2024 02:49 PM			
Client ID:	Run ID: VMS2_240129A			SeqNo: 3287704			Prep Date:			DF: 1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	42.8	5.0	50	0	85.6	66.9-140	0	0		
1,1-Dichloroethene	39.96	5.0	50	0	79.9	41.4-161	0	0		
1,2-Dichloroethane	54.54	5.0	50	0	109	58.9-137	0	0		
1,3-Dichlorobenzene	51	5.0	50	0	102	42.5-150	0	0		
1,4-Dichlorobenzene	51.22	5.0	50	0	102	52.1-137	0	0		
Benzene	46.51	5.0	50	0	93	35.8-162	0	0		
Carbon tetrachloride	44.05	5.0	50	0	88.1	53.2-137	0	0		
Chlorobenzene	49.7	5.0	50	0	99.4	65.6-137	0	0		
Chloroform	48.11	5.0	50	0	96.2	58-130	0	0		
cis-1,2-Dichloroethene	46	5.0	50	0	92	52.9-138	0	0		
Ethylbenzene	46.22	5.0	50	0	92.4	57.5-134	0	0		
m,p-Xylene	93.62	10	100	0	93.6	56.4-135	0	0		
Styrene	49.91	5.0	50	0	99.8	60.9-135	0	0		
Tetrachloroethene	35.78	5.0	50	0	71.6	28.3-109	0	0		
Toluene	46.35	5.0	50	0	92.7	67.7-135	0	0		
Trichloroethene	45.22	5.0	50	0	90.4	56.5-136	0	0		
<i>Surr:</i> 4-Bromofluorobenzene	51.23	0	50	0	102	60-140	0	0		
<i>Surr:</i> Dibromofluoromethane	49.75	0	50	0	99.5	60-140	0	0		
<i>Surr:</i> Toluene-d8	49.69	0	50	0	99.4	60-140	0	0		

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **R225642** Instrument ID **VMS2** Method: **SW8260B**

MSD				Sample ID: 24010773-01 MSD			Units: µg/Kg		Analysis Date: 1/29/2024 03:36 PM		
Client ID:		Run ID: VMS2_240129A		SeqNo: 3287706			Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
1,1,1-Trichloroethane	44.78	5.0	50	0	89.6	66.9-140	42.8	4.51	31.2		
1,1-Dichloroethene	40.2	5.0	50	0	80.4	41.4-161	39.96	0.589	38.1		
1,2-Dichloroethane	57.21	5.0	50	0	114	58.9-137	54.54	4.78	26.2		
1,3-Dichlorobenzene	50.27	5.0	50	0	101	42.5-150	51	1.45	21		
1,4-Dichlorobenzene	49.88	5.0	50	0	99.8	52.1-137	51.22	2.65	28.7		
Benzene	50.22	5.0	50	0	100	35.8-162	46.51	7.66	23.6		
Carbon tetrachloride	46	5.0	50	0	92	53.2-137	44.05	4.32	32.3		
Chlorobenzene	51.18	5.0	50	0	102	65.6-137	49.7	2.92	20		
Chloroform	48.93	5.0	50	0	97.9	58-130	48.11	1.69	28.2		
cis-1,2-Dichloroethene	47.79	5.0	50	0	95.6	52.9-138	46	3.8	23.7		
Ethylbenzene	47.91	5.0	50	0	95.8	57.5-134	46.22	3.58	24.9		
m,p-Xylene	96.18	10	100	0	96.2	56.4-135	93.62	2.7	25.1		
Styrene	50.92	5.0	50	0	102	60.9-135	49.91	2	22.8		
Tetrachloroethene	38.18	5.0	50	0	76.4	28.3-109	35.78	6.49	24.7		
Toluene	48.85	5.0	50	0	97.7	67.7-135	46.35	5.24	20		
Trichloroethene	48.52	5.0	50	0	97	56.5-136	45.22	7.05	20		
<i>Surr: 4-Bromofluorobenzene</i>	50.53	0	50	0	101	60-140	51.23	1.38			
<i>Surr: Dibromofluoromethane</i>	47.74	0	50	0	95.5	60-140	49.75	4.12			
<i>Surr: Toluene-d8</i>	49.32	0	50	0	98.6	60-140	49.69	0.753			

The following samples were analyzed in this batch:

24010877-01A 24010877-02A 24010877-03A
24010877-04A

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **R225693** Instrument ID **VMS2** Method: **SW8260B**

MLBK	Sample ID: MLKR-R225693		Units: µg/Kg		Analysis Date: 1/30/2024 04:04 PM				
Client ID:	Run ID: VMS2_240130A		SeqNo: 3289017		Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD Limit	Qual
1,1,1,2-Tetrachloroethane	ND	5.0							
1,1,1-Trichloroethane	ND	5.0							
1,1,2,2-Tetrachloroethane	ND	5.0							
1,1,2-Trichloroethane	ND	5.0							
1,1-Dichloroethane	ND	5.0							
1,1-Dichloroethene	ND	5.0							
1,1-Dichloropropene	ND	5.0							
1,2,3-Trichlorobenzene	ND	5.0							
1,2,3-Trichloropropane	ND	5.0							
1,2,4-Trichlorobenzene	ND	5.0							
1,2,4-Trimethylbenzene	ND	5.0							
1,2-Dibromo-3-chloropropane	ND	5.0							
1,2-Dibromoethane	ND	5.0							
1,2-Dichlorobenzene	ND	5.0							
1,2-Dichloroethane	ND	5.0							
1,2-Dichloropropane	ND	5.0							
1,3,5-Trimethylbenzene	ND	5.0							
1,3-Dichlorobenzene	ND	5.0							
1,3-Dichloropropane	ND	5.0							
1,4-Dichlorobenzene	ND	5.0							
2,2-Dichloropropane	ND	5.0							
2-Butanone	ND	50							
2-Chlorotoluene	ND	5.0							
2-Hexanone	ND	5.0							
4-Chlorotoluene	ND	5.0							
4-Methyl-2-pentanone	ND	5.0							
Acetone	ND	50							
Benzene	ND	5.0							
Bromobenzene	ND	5.0							
Bromochloromethane	ND	5.0							
Bromodichloromethane	ND	5.0							
Bromoform	ND	5.0							
Bromomethane	ND	5.0							
Carbon disulfide	ND	5.0							
Carbon tetrachloride	ND	5.0							
Chlorobenzene	ND	5.0							
Chloroethane	ND	5.0							
Chloroform	ND	5.0							
Chloromethane	ND	5.0							
cis-1,2-Dichloroethene	ND	5.0							
cis-1,3-Dichloropropene	ND	5.0							
Dibromochloromethane	ND	5.0							

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: R225693	Instrument ID VMS2	Method: SW8260B				
Dibromomethane	ND	5.0				
Dichlorodifluoromethane	ND	5.0				
Ethylbenzene	ND	5.0				
Hexachlorobutadiene	ND	5.0				
Isopropylbenzene	ND	5.0				
m,p-Xylene	ND	10				
Methyl tert-butyl ether	ND	5.0				
Methylene chloride	ND	20				
Naphthalene	ND	5.0				
n-Butylbenzene	ND	5.0				
n-Propylbenzene	ND	5.0				
o-Xylene	ND	5.0				
p-Isopropyltoluene	ND	5.0				
sec-Butylbenzene	ND	5.0				
Styrene	ND	5.0				
tert-Butylbenzene	ND	5.0				
Tetrachloroethene	ND	5.0				
Toluene	ND	5.0				
trans-1,2-Dichloroethene	ND	5.0				
trans-1,3-Dichloropropene	ND	5.0				
Trichloroethene	ND	5.0				
Trichlorofluoromethane	ND	5.0				
Vinyl chloride	ND	5.0				
Xylenes, Total	ND	15				
<i>Surr: 4-Bromofluorobenzene</i>	48.94	0	50	0	97.9	60-140
<i>Surr: Dibromofluoromethane</i>	50.3	0	50	0	101	60-140
<i>Surr: Toluene-d8</i>	54.51	0	50	0	109	60-140

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **R225693** Instrument ID **VMS2** Method: **SW8260B**

LCS		Sample ID: LCSR-R225693			Units: µg/Kg		Analysis Date: 1/30/2024 02:31 PM			
Client ID:		Run ID: VMS2_240130A			SeqNo: 3289013		Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	51.32	5.0	50	0	103	53.6-149		0		
1,1-Dichloroethene	47.94	5.0	50	0	95.9	38.8-176		0		
1,2-Dichloroethane	57.01	5.0	50	0	114	54.4-145		0		
1,3-Dichlorobenzene	57.83	5.0	50	0	116	58.4-144		0		
1,4-Dichlorobenzene	57.36	5.0	50	0	115	55.3-144		0		
Benzene	53.98	5.0	50	0	108	56-148		0		
Carbon tetrachloride	53.5	5.0	50	0	107	51.9-151		0		
Chlorobenzene	56.04	5.0	50	0	112	55.4-137		0		
Chloroform	52.5	5.0	50	0	105	51.1-147		0		
cis-1,2-Dichloroethene	53.09	5.0	50	0	106	47.6-149		0		
Ethylbenzene	54.29	5.0	50	0	109	55.8-142		0		
m,p-Xylene	109.9	10	100	0	110	57.6-141		0		
Styrene	56	5.0	50	0	112	59.6-143		0		
Tetrachloroethene	42.94	5.0	50	0	85.9	35.6-132		0		
Toluene	54.48	5.0	50	0	109	56-143		0		
Trichloroethene	54.51	5.0	50	0	109	56.5-143		0		
<i>Surr: 4-Bromofluorobenzene</i>	50.08	0	50	0	100	60-140		0		
<i>Surr: Dibromofluoromethane</i>	48.3	0	50	0	96.6	60-140		0		
<i>Surr: Toluene-d8</i>	50.6	0	50	0	101	60-140		0		

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **R225693** Instrument ID **VMS2** Method: **SW8260B**

MS	Sample ID: 24010807-02 MS				Units: µg/Kg		Analysis Date: 1/30/2024 02:54 PM			
Client ID:	Run ID: VMS2_240130A			SeqNo: 3289014		Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	38.59	5.0	50	0	77.2	66.9-140	0	0		
1,1-Dichloroethene	35.6	5.0	50	0	71.2	41.4-161	0	0		
1,2-Dichloroethane	51.48	5.0	50	0	103	58.9-137	0	0		
1,3-Dichlorobenzene	45.68	5.0	50	0	91.4	42.5-150	0	0		
1,4-Dichlorobenzene	45.98	5.0	50	0	92	52.1-137	0	0		
Benzene	43.81	5.0	50	0	87.6	35.8-162	0	0		
Carbon tetrachloride	39	5.0	50	0	78	53.2-137	0	0		
Chlorobenzene	46.83	5.0	50	0	93.7	65.6-137	0	0		
Chloroform	44.34	5.0	50	0	88.7	58-130	0	0		
cis-1,2-Dichloroethene	44.77	5.0	50	0	89.5	52.9-138	0	0		
Ethylbenzene	42.45	5.0	50	0	84.9	57.5-134	0	0		
m,p-Xylene	86.11	10	100	0	86.1	56.4-135	0	0		
Styrene	46.51	5.0	50	0	93	60.9-135	0	0		
Tetrachloroethene	32.82	5.0	50	0	65.6	28.3-109	0	0		
Toluene	41.96	5.0	50	0	83.9	67.7-135	0	0		
Trichloroethene	42.34	5.0	50	0	84.7	56.5-136	0	0		
<i>Surr:</i> 4-Bromofluorobenzene	49.17	0	50	0	98.3	60-140	0	0		
<i>Surr:</i> Dibromofluoromethane	48.3	0	50	0	96.6	60-140	0	0		
<i>Surr:</i> Toluene-d8	48.55	0	50	0	97.1	60-140	0	0		

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Work Order: 24010877
Project: 948 Ferndale Place

QC BATCH REPORT

Batch ID: **R225693** Instrument ID **VMS2** Method: **SW8260B**

MSD				Sample ID: 24010807-02 MSD			Units: µg/Kg		Analysis Date: 1/30/2024 03:17 PM		
Client ID:		Run ID: VMS2_240130A		SeqNo: 3289015			Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
1,1,1-Trichloroethane	37.49	5.0	50	0	75	66.9-140	38.59	2.89	31.2		
1,1-Dichloroethene	36.58	5.0	50	0	73.2	41.4-161	35.6	2.72	38.1		
1,2-Dichloroethane	48.33	5.0	50	0	96.7	58.9-137	51.48	6.33	26.2		
1,3-Dichlorobenzene	43.77	5.0	50	0	87.5	42.5-150	45.68	4.28	21		
1,4-Dichlorobenzene	43.98	5.0	50	0	88	52.1-137	45.98	4.45	28.7		
Benzene	42.22	5.0	50	0	84.4	35.8-162	43.81	3.69	23.6		
Carbon tetrachloride	38.32	5.0	50	0	76.6	53.2-137	39	1.75	32.3		
Chlorobenzene	43.97	5.0	50	0	87.9	65.6-137	46.83	6.29	20		
Chloroform	42.38	5.0	50	0	84.8	58-130	44.34	4.52	28.2		
cis-1,2-Dichloroethene	42.61	5.0	50	0	85.2	52.9-138	44.77	4.95	23.7		
Ethylbenzene	40.9	5.0	50	0	81.8	57.5-134	42.45	3.71	24.9		
m,p-Xylene	82.33	10	100	0	82.3	56.4-135	86.11	4.49	25.1		
Styrene	43.65	5.0	50	0	87.3	60.9-135	46.51	6.34	22.8		
Tetrachloroethene	32.08	5.0	50	0	64.2	28.3-109	32.82	2.28	24.7		
Toluene	41.93	5.0	50	0	83.9	67.7-135	41.96	0.0715	20		
Trichloroethene	41.04	5.0	50	0	82.1	56.5-136	42.34	3.12	20		
<i>Surr: 4-Bromofluorobenzene</i>	50.65	0	50	0	101	60-140	49.17	2.98			
<i>Surr: Dibromofluoromethane</i>	48.3	0	50	0	96.6	60-140	48.3	0.0166			
<i>Surr: Toluene-d8</i>	49.64	0	50	0	99.3	60-140	48.55	2.2			

The following samples were analyzed in this batch:

24010877-05A 24010877-06A

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Client: Pandey Environmental, LLC
Project: 948 Ferndale Place
WorkOrder: 24010877

**QUALIFIERS,
ACRONYMS, UNITS**

<u>Qualifier</u>	<u>Description</u>
*	Value exceeds Regulatory Limit
a	Not accredited
B	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
H	Analyzed outside of Holding Time
J	Analyte detected below quantitation limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
O	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL

<u>Acronym</u>	<u>Description</u>
DUP	Method Duplicate
E	EPA Method
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MBLK	Method Blank
MDL	Method Detection Limit
MQL	Method Quantitation Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PDS	Post Digestion Spike
PQL	Practical Quantitaion Limit
SDL	Sample Detection Limit
SW	SW-846 Method

<u>Units Reported</u>	<u>Description</u>
% of sample	
µg/Kg-dry	
mg/Kg-dry	

Sample Receipt Checklist

Client Name: PANDEYENVIRONMENTAL-COLDate/Time Received: 26-Jan-24 13:00Work Order: 24010877Received by: AB1Checklist completed by Alec Bolender

26-Jan-24

eSignature

Reviewed by: Shawn Smythe

26-Jan-24

eSignature

Matrices: soilCarrier name: Courier

Shipping container/cooler in good condition?

Yes No Not Present

Custody seals intact on shipping container/cooler?

Yes No Not Present

Custody seals intact on sample bottles?

Yes No Not Present

Chain of custody present?

Yes No

Chain of custody signed when relinquished and received?

Yes No

Chain of custody agrees with sample labels?

Yes No

Samples in proper container/bottle?

Yes No

Sample containers intact?

Yes No

Sufficient sample volume for indicated test?

Yes No

All samples received within holding time?

Yes No

Container/Temp Blank temperature in compliance?

Yes No

Sample(s) received on ice?

Yes No

Temperature(s)/Thermometer(s):

4.5 120489

Cooler(s)/Kit(s):

Date/Time sample(s) sent to storage:

Water - VOA vials have zero headspace?

Yes No No VOA vials submitted

Water - pH acceptable upon receipt?

Yes No N/A

pH adjusted?

Yes No N/A

pH adjusted by:

Login Notes:

Client Contacted:

Date Contacted:

Person Contacted:

Contacted By:

Regarding:

Comments:

CorrectiveAction:

Ship To: **ALS | Environmental**
4388 Glendale Milford Rd.
Cincinnati, Ohio 45242

Phone: **(513) 733-5336**

Fax: **(513) 733-5347**

Field Chain-of-Custody Record

Page _____ of _____

79336

REV 10/2017

Date: <u>January 24, 2024</u>	Purchase Order No.: _____	
Company Name: <u>PANDEY Environmental, LLC</u>	Project No.: _____	
Address: <u>6277 Riverside Dr. Suite 2 South</u>	Sampling Site: <u>948 Ferndale Place</u>	
<u>Dublin</u>	<u>OH</u>	<u>43017</u>
City	State	Zip
Person to Contact: <u>Jason Martin</u>	Billing Address (if different): _____	
Email Address: <u>J.martin@pandeyenvironmental.com</u>		
Telephone (): <u>614 444 8078</u>		
Alternate Contact: <u>Dragusa@pandeyenvironmental.com</u>		

Notes:

Preservation Key: 1 - HCl 2 - HNO₃ 3 - H₂SO₄ 4 - NaOH 5 - Na₂SO₄ 6 - NaHSO₄ 7 - NaOH/ZnAcetate 8 - Other 9 - 4°C | Matrix Key: A - Air B - Bulk S - Soil W - Water

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.

Relinquished By: (Signature)	<i>Tom Rayson</i>	Time / Date 1256 1/25/24	Received By: (Signature)	<i>Mark Galit</i>	Time / Date 1256 1-25-24
Relinquished By: (Signature)	<i>Mark Galit</i>	Time / Date 1244 1-20-24	Received By: (Signature)	<i>Tom Jr HIS</i>	Time / Date 11661 1-20-24
Relinquished By: (Signature)		Time / Date	Received By: (Signature)		Time / Date

ALS LAB USE ONLY		120489				
COOLER TEMP:	4.5	°C	TAKEN WITH IR#:		119063	119059
COOLING METHOD:	NONE	COOLER	WET ICE	DRY ICE	ICE PACK	
DELIVERY METHOD:	CLIENT	DROP BOX		FEDEX	UPS	
STD MAIL	PRTY MAIL	ALS	COURIER	OTHER:		
CUSTODY SEALS:		NOT REQUIRED	COOLER	PACKAGE	SAMPLES	
pH ADJUSTMENTS:						

Affidavit by Accredited Lab Pursuant to OAC 3745-300-13(P)

[For VAP laboratories to attest to "accredited data" under OAC 3745-300-13(P) and OAC 3745-300-01(A)(2). Note that Ohio EPA is to receive a legible copy of the AL's affidavit. The entity that received the AL's analytical report under affidavit may retain the AL's affidavit original.]

State of Ohio)
County of Clermont)
ss:

I, Tracey Earle, being first duly sworn according to law, state that, to the best of my knowledge, information and belief:

1. I am an adult over the age of eighteen years old and competent to testify herein.
2. I am employed by ALS Environmental ("the laboratory") as Quality Assurance Manager. I am authorized to submit this affidavit on behalf of the laboratory.
3. The purpose of this submission is to support a request for a no further action letter or other aspects of a voluntary action, under Ohio's Voluntary Action Program (VAP) as set forth in Ohio Revised Code Chapter 3746 and Ohio Administrative Code (OAC) Chapter 3745-300.
4. ALS Environmental performed analyses for Pandey Environmental, LLC for a voluntary action at property known as the Ferndale Place project located at 948 Ferndale Place Bexley, OH 43209.
5. This affidavit applies to and is submitted with the following information, data, documents or reports for the property:

<u>ALS Work Order ID</u>	<u>Date of Document</u>
24010877-VOCs (SW8260B)	2/2/24
24010877-SVOCs (SW8270C)	2/2/24
24010877-Metals (SW6010B)	2/2/24
24010877-Hg (SW7471A)	2/2/24

6. ALS Environmental was a VAP accredited laboratory pursuant to OAC 3745-300-01(A)(2) when it performed the analyses referenced herein.
7. All analyses under this affidavit consist of VAP "accredited data" as described in OAC 3745-300-01(A)(2) -- unless paragraph b., below, specifies the exceptions:
 - a. The laboratory performed the analyses within its current accredited laboratory requirements. The laboratory was accredited for each analyte, parameter group and method used at the time that it performed the analyses. The analyses were performed consistent with the laboratory's standard operating procedures and quality assurance program plan as required.
 - b. Exceptions, if any: The laboratory was not accredited for the following analysis:

<u>ALS Work Order #</u> 24010877	<u>Analyte / Parameter Group</u> Moisture	<u>Method</u> SM2540B
-------------------------------------	--	--------------------------

8. The information, data, documents, and reports identified under this affidavit are true, accurate and complete.

8. The information, data, documents, and reports identified under this affidavit are true, accurate and complete.

Further affiant sayeth naught.

Tracy Earle

Signature of Affiant

Sworn to before me and subscribed in my presence this 5th day of February, 2024.

Beth Severeid

Notary Public

BETH RAE SEVEREID
Notary Public, State of Ohio
My Commission Expires August 1, 2024

APPENDIX B
FIELD SHEETS

ENVIRONMENTAL SOIL BORE LOG

Site: Bexley- Ferndale Properties Bore ID: 948 Ferndale:SB-1

Date Drilled: 1/24/24 Drill Rig: Geoprobe 7822 DT

Weather: 50 F & Rain Auger Diam: N/A

Co-located MW/SG: N/A Sampler Type: N/A

Location: Logged By: DMR Sampler Size: N/A

Auger	Rod Depth	Soil Sampled	Sample Sent	Depth	VOC (ppm)	% Recovery	Soil Description		
							Asphalt to ~1' brown clay loam beneath		
					0	50	Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				2'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type: intermittent		
					0.1	50	Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				4'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
					0	80	Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				6'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
					0	80	Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				8'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
					0	95	Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				10'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				12'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				14'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		

Notes:

TOTAL DEPTH: 10'

Page 1 of 1

ENVIRONMENTAL SOIL BORE LOG

Site: Bexley- Ferndale Properties	Bore ID: 948 Ferndale:SB-2
Date Drilled: 1/24/24	Drill Rig: Geoprobe 7822 DT
Weather: 50 F & Rain	Auger Diam: N/A
Co-located MW/SG: N/A	Sampler Type: N/A

Location:

Logged By: DMR Sampler Size: N/A

Auger	Rod Depth	Soil Sampled	Sample Sent	Depth	VOC (ppm)	% Recovery	Soil Description		
					0.2	50	Gravelly clay loam w/ intermittent concrete chunks black and red staining throughout		
				2'	0.1	50			
				4'	0	80			
				6'	0	80	Gravelly clay loam w/ intermittent concrete chunks black staining to 4.25' light brown gravelly clay loam to 6'		
				8'	0	80			
				10'	0	100			
				12'					
				14'					
							Staining Present: Y / N	Type:	
							Odor Present: Y / N	Type:	
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N	Type:	
							Odor Present: Y / N	Type:	
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N	Type: slight @ top	
							Odor Present: Y / N	Type:	
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N	Type:	
							Odor Present: Y / N	Type:	
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N	Type:	
							Odor Present: Y / N	Type:	
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N	Type:	
							Odor Present: Y / N	Type:	
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N	Type:	
							Odor Present: Y / N	Type:	
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N	Type:	
							Odor Present: Y / N	Type:	
							Moisture Type: DRY / MOIST / SATURATED		

Notes:

TOTAL DEPTH: 10'

PANDEY
ENVIRONMENTAL, LLC

6277 Riverside Drive, Suite 2 South
Dublin, Ohio 43017 614-444-8078

ENVIRONMENTAL SOIL BORE LOG

Site: Bexley- Ferndale Properties Bore ID: 948 Ferndale:SB-3

Date Drilled: 1/24/24 Drill Rig: Geoprobe 7822 DT

Weather: 50 F & Rain Auger Diam: N/A

Co-located MW/SG: N/A Sampler Type: N/A

Location:

Logged By: DMR Sampler Size: N/A

Auger	Rod Depth	Soil Sampled	Sample Sent	Depth	VOC (ppm)	% Recovery	Soil Description		
							Fine gravel and silt loam w/ organics		
					0	30	black and red stained gravelly silt loam (brown)		
				2'			black and red stained gravelly silt loam (brown) to 4.5' hard/brown/dry clay loam with black staining intermittent		
				4'			brown clay with light black staining		
				6'			light brown/ red clay		
				8'			light brown/ red clay		
				10'			light brown/ red clay		
				12'			light brown/ red clay		
				14'			light brown/ red clay		
							Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
							Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		

Notes:

TOTAL DEPTH: 10'

Page 1 of 1

PANDEY
ENVIRONMENTAL, LLC

6277 Riverside Drive, Suite 2 South
Dublin, Ohio 43017 614-444-8078

ENVIRONMENTAL SOIL BORE LOG

Site: Bexley- Ferndale Properties	Bore ID: 948 Ferndale:SB-4
Date Drilled: 1/24/24	Drill Rig: Geoprobe 7822 DT
Weather: 50 F & Rain	Auger Diam: N/A
Co-located MW/SG: N/A	Sampler Type: N/A

Location:	Logged By: DMR	Sampler Size: N/A
-----------	----------------	-------------------

Auger	Rod Depth	Soil Sampled	Sample Sent	Depth	VOC (ppm)	% Recovery	Soil Description		
							Organic Material to 0.5' brown silty clay loam w/ black and red staining		
					0	45	Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type: black/ red		
							Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				2'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type: dark red/ white		
					0	45	Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				4'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
					0.1	55	Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				6'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type: black/red (manganese/ iron oxides)		
					0	55	Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				8'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
					0	100	Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				10'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				12'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		
				14'			Staining Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Odor Present: <input checked="" type="checkbox"/> Y / <input type="checkbox"/> N Type:		
							Moisture Type: <input checked="" type="checkbox"/> DRY / <input type="checkbox"/> MOIST / <input type="checkbox"/> SATURATED		

Notes:

TOTAL DEPTH: 10'

Page 1 of 1

PANDEY
ENVIRONMENTAL, LLC

6277 Riverside Drive, Suite 2 South
Dublin, Ohio 43017 614-444-8078

ENVIRONMENTAL SOIL BORE LOG

Site: Bexley- Ferndale Properties Bore ID: 948 Ferndale:SB-5

Date Drilled: 1/24/24 Drill Rig: Geoprobe 7822 DT

Weather: 50 F & Rain Auger Diam: N/A

Co-located MW/SG: N/A Sampler Type: N/A

Location:

Logged By: DMR Sampler Size: N/A

Auger	Rod Depth	Soil Sampled	Sample Sent	Depth	VOC (ppm)	% Recovery	Soil Description		
							Organic material to 0.5' dark brown silty clay loam higher clay content at 1.5'		
					0.1	50	Staining Present: Y / N Type: slight		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
				2'			light brown silty clay loam with gravel		
					0	50	Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
				4'			dry clay loam with cobbles and intermittent black staining		
					0	70	Staining Present: Y / N Type: black		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
				6'			hard/light brown/ dry clay		
					0	70	Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
				8'			hard/light brown/ dry clay		
					0	100	Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
				10'			hard/light brown/ dry clay		
							Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
				12'			hard/light brown/ dry clay		
							Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		
				14'			hard/light brown/ dry clay		
							Staining Present: Y / N Type:		
							Odor Present: Y / N Type:		
							Moisture Type: DRY / MOIST / SATURATED		

Notes:

TOTAL DEPTH: 10'

Page 1 of 1

PANDEY ENVIRONMENTAL, LLC

ENVIRONMENTAL SOIL BORE LOG

Site: Bexley- Ferndale Properties	Bore ID: 948 Ferndale:SB-6
Date Drilled: 1/24/24	Drill Rig: Geoprobe 7822 DT
Weather: 50 F & Rain	Auger Diam: N/A
Co-located MW/SG: N/A	Sampler Type: N/A

Location:

Logged By: DMR Sampler Size: N/A

Auger	Rod Depth	Soil Sampled	Sample Sent	Depth	VOC (ppm)	% Recovery	Soil Description		
							Organics to 0.5' medium brown silty clay loam		
				2'	0	50		Staining Present: Y / N	Type:
								Odor Present: Y / N	Type:
								Moisture Type: DRY / MOIST / SATURATED	
				4'	0	50	light brown silty clay loam with gravel and wood intermittent	Staining Present: Y / N	Type:
								Odor Present: Y / N	Type:
								Moisture Type: DRY / MOIST / SATURATED	
				6'	0	70	brown silty clay loam with gravel intermittent	Staining Present: Y / N	Type: slight/black
								Odor Present: Y / N	Type:
								Moisture Type: DRY / MOIST / SATURATED	
				8'	0	70	brown silty clay loam with gravel intermittent	Staining Present: Y / N	Type:
								Odor Present: Y / N	Type:
								Moisture Type: DRY / MOIST / SATURATED	
				10'				Staining Present: Y / N	Type:
								Odor Present: Y / N	Type:
								Moisture Type: DRY / MOIST / SATURATED	
				12'				Staining Present: Y / N	Type:
								Odor Present: Y / N	Type:
								Moisture Type: DRY / MOIST / SATURATED	
				14'				Staining Present: Y / N	Type:
								Odor Present: Y / N	Type:
								Moisture Type: DRY / MOIST / SATURATED	

Notes:

TOTAL DEPTH: 10'

APPENDIX C
RESUMES OF ENVIRONMENTAL PROFESSIONALS

Atul Pandey, P.E., C.P., M.S.

President

Mr. Pandey is the President and CEO of PANDEY Environmental, LLC. His area of expertise includes site assessment, remediation, brownfield redevelopment, and urban conservation. Mr. Pandey has more than 20 years of experience performing Phase I, II, and III site assessments, underground storage tank removals, closure, assessment, and corrective action, RCRA closures and corrective actions, Ohio EPA Voluntary Action Program No Further Action Letters, Clean Ohio Fund Site Assessments and general site assessment and remediation tasks. Clients have included municipalities, federal and state agencies, commercial and industrial realtors, bankers, insurance companies and real estate developers.

Mr. Pandey has worked for Ohio EPA, where he developed the Ohio EPA VAP Generic Leaching Guidance Document used by the Voluntary Action Program. He also worked in Ohio EPA's Southwest District Office of Division of Solid and Infectious Waste Management, located in Dayton, Ohio.

Prior to forming PANDEY Environmental, LLC in 2002, Mr. Pandey technically and administratively supervised a multi-disciplinary team of seven professionals at a private consulting firm. Projects included Phase I and II environmental site assessments, underground storage tank closures, corrective actions, risk assessments, RCRA closures and corrective actions, landfill groundwater monitoring and assessment programs, and Voluntary Action Program projects.

Mr. Pandey has also authored multiple publications.

EDUCATION:

University of Cincinnati, Ohio

Master of Science in Environmental Engineering, 1993

Thesis Title: Effect of Swelling Percentages on the Shear Strength of Compacted Clay Liners

University of Delhi, India

Bachelor of Science in Civil Engineering, 1991

Emphasis: Environmental Engineering

CERTIFICATIONS

- Registered Professional Engineer, States of Ohio and South Carolina, Environmental Engineering
- State of Ohio Voluntary Action Program, Certified Professional, Certification #CP224
- Qualified as an Environmental Professional under "All Appropriate Inquires" (AAI) Rule
- 40 hour HAZWOPER certified (29 CFR 1910.120)

CAREER HIGHLIGHTS/ACCOMPLISHMENTS

- Issued twenty-one (21) VAP NFA letters, twenty (20) of which have received Covenants Not to Sue (one NFA was recently issued and the CNS is pending Ohio EPA review).
- Prepared five (5) successful Urban Setting Designation Requests.

- Authored Ohio EPA VAP Generic Leaching Guidance Document; this document is currently being used in the state of Ohio by VAP Certified Professionals as a standard to evaluate leaching of vadose zone contaminants under VAP and RCRA programs.
- Selected by the Ohio EPA in April 2005 to represent all Ohio EPA Certified Professionals (Brownfield Licensed Professionals) to the Hazardous Waste division of the Ohio EPA. This prestigious recognition was made due to extensive experience with multiple programs of the Ohio EPA including the Voluntary Action Program (Brownfields Program), and programs under the Division of Hazardous Waste and the Division of Solid Waste.

PROFESSIONAL EXPERIENCE

10/02 to present President, PANDEY Environmental, LLC

Mr. Pandey founded PANDEY Environmental, LLC to provide fast, reliable, and expert environmental site assessment services to commercial and industrial clients at a competitive price. Services provided by the consulting company include but are not limited to Phase I, II Environmental Site Assessments, Underground Storage Tank Removal, Closure, and Corrective Action, Voluntary Action Program Site Assessments, Clean Ohio Fund Application Preparation and Site Assessments, Expert Witness Services, Risk Assessment Services, Fate and Transport Modeling, and VAP Certified Professional Services.

11/98 to 9/02 Vice President/Senior Engineer, Smalley & Associates, Inc.

Duties and responsibilities included supervising a multi-disciplinary team of 7 professionals that were involved in various projects ranging from Phase I and II environmental site assessment, underground storage tank closure, corrective action, and risk assessment, RCRA closures and corrective action, landfill groundwater monitoring and assessment programs, and Voluntary Action Program projects; Also responsible for professional development of these individuals.

Duties also included managing the operations of a full service Ohio EPA VAP certified analytical laboratory and drilling crew. Additional responsibilities included business development and client interface for Ohio VAP and RCRA projects.

In this position, issued eleven (11) No Further Action letters under Voluntary Action Program to Ohio EPA for the following properties; all of these properties have successfully obtained VAP Covenants Not to Sue.

11/96 to 11/98 Environmental Engineer, Ohio EPA Voluntary Action Program

General responsibilities included assessment of No Further Action Letters prepared by Certified Professionals conducting voluntary actions at properties with hazardous substances and petroleum contamination; determining RCRA corrective action eligibility of the properties for the Voluntary Action Program, and assessing leaching of petroleum constituents and other contaminants; providing technical assistance to Certified Professionals, volunteers, and other parties interested in voluntary action; managing field audits of properties that have received Covenants Not to Sue.

At the Ohio EPA's Division of Solid and Infectious Waste Management, general responsibilities included reviewing and evaluating Permit to Install applications and detail plans for all types of solid and

infectious waste facilities making recommendations for approval or denial; directing the inspectors in conducting the solid waste compliance monitoring program; providing technical assistance to local governments, citizens, industry, and others regarding solid and infectious waste management; also spoke at public meetings on solid waste permitting issues.

1/92 to 11/96 *Project Engineer, Science Applications International Corporation*

Responsibilities as a project engineer included project management and team support, budget control, report preparation, negotiations with state and federal regulatory agencies, vendor and consultant oversight, and working on site remediation and compliance issues. Select project experience includes:

- Identified, screened, and evaluated remedial technologies for RCRA CMS or CERCLA RI/FS; conducted the same for four solid waste management units at Portsmouth US DOE site with soil and/or groundwater contamination; also negotiated corrective action scope with regulatory agencies and co-authored the CMS reports.
- Managed and supervised a \$500,000 contract for conducting a pilot scale treatability study of measuring enhancements to groundwater flow using an innovative technology (pneumatic fracturing); developed work plan, support plans (HSP, QAPjP, SAP), and summary report.
- Managed a \$200,000 project dealing with a field and laboratory investigation to establish adsorptive and natural attenuation characteristics at a superfund site.
- Developed a database to facilitate air emissions reporting and permitting for over 250 sources in accordance with Title V requirements of the Clean Air Act for a synthetic organic chemical manufacturer in southern Ohio; created data architecture, conducted the beta-test on the database software, and created chemical process-specific user's guides.
- Facilitated compliance with RCRA Subtitle CC regulations at a chemical manufacturer's facility; also prepared the SARA 313, fee emission, and Title V reports for the facility.
- Served as Technical Advisor to the State of Ohio, Environmental Protection Agency's modeling subgroup of the generic standards subcommittee charged with the development of generic deep soil cleanup levels across the state in accordance with the requirements of Senate Bill 221 (Brownfields); conducted all of the modeling on this project using an unsaturated soil zone leaching model (SESOIL); also authored the associated technical guidance documents.
- Constructed and calibrated groundwater flow models using MAGNAS3 and FRAC3DVS codes for groundwater plumes at the US DOE site; evaluated remedial alternatives with these models.

PUBLICATIONS

Pandey, A., Hetrick, D.M., and Khan, A., Innovative Approach Proposed for Evaluating Risks due to Soil Contamination, SESOIL - A Decade, Amherst Scientific Publishers, 1996.

Pandey, A., Cherry, E., Steigerwald, V., and Pickrel, C., Groundwater Protection and Soil Remediation, Fifth Annual Business and Industry's Environmental Symposium - Conference Proceedings, Cincinnati, 1996.

Pandey, A. et al., Innovative Approach Developed for Deriving Leach-Based Soil Cleanup Values Protective of Groundwater, 12th Annual Conference on Contaminated Soils, University of Massachusetts at Amherst, 1997.

Hetrick, D. and Pandey, A., A methodology for establishing cleanup objectives in the saturated soil zone using sensitivity and uncertainty analysis for chemical fate and transport, *Journal of Soil Contamination*, 8(5):559-576, 1999

ENGINEERING & MODELING SOFTWARE

Proficient with a wide range of environmental modeling software including MODFLOW, MAGNAS3, FRAC3DVS, MT3D, SAS, SURFER, GeoEAS, HELP, SESOIL, CHEMFLO, VLEACH, RITZ, PESTAN, Summers, AT123D, EnCompass, GARDS, SIMS, HonRuler, TANKS, and STARSHIP (Title V); advanced knowledge of Microsoft EXCEL and SURFER programs.

Also taught 3-day modeling course entitled “Application of SESOIL in Ohio EPA’s Voluntary Action Program” in June, 1999 to Certified Professionals and other consultants.

Dominic Ragusa

Environmental Scientist

As an Environmental Scientist, Mr. Ragusa regularly performs ASTM or Ohio EPA VAP Phase I and Phase II site assessments. He regularly conducts active site assessment for the investigation of contamination within commercial/ industrial/ residential sites. This includes, but is not limited to the collection of soil, air and groundwater media and the preparation of associated reporting. Similarly, he provides oversight and instruction to subcontracted companies working to reclaim/remediate contaminated commercial/ industrial sites. Other duties include budget tracking and management of remedial media.

EDUCATION:

West Virginia University - Morgantown, WV

Bachelor of Science in Environmental, Soil and Water Science

Emphasis: Soil and Water Conservation

SPECIALIZED TRAINING/ PROFESSIONAL AFFILIATIONS:

- 40 Hour OSHA HAZWOPER Training (29 CFR 1910.120)

CAREER HIGHLIGHTS/ACCOMPLISHMENTS

- Suitability analysis for post reclamation surface mines as part of the Division of Plant and Soil Sciences Graduate Research Program at West Virginia University.
- He assisted in analysis and sample collection for the Division of Plant and soil Sciences Soil Testing Laboratory as an undergraduate assistant for two Masters of Soil Sciences Candidates.
- As a Hazwoper technician at Envirotrac Ltd. he assisted in hazardous waste spill response, phase 2 processes such as excavation oversight, delineation, soil conductivity field analysis, regulatory and clearance soil sampling, and general safety oversight.
- Mr. Ragusa consulted on a large Phase II and active remediation site for an overturned tractor-trailer carrying Fracking Production Liquid.
- Management of a multimillion-dollar remediation project, encompassing three properties through the OHIO Voluntary Action Program (VAP).
- Oversight and development of groundwater well and soil gas point installation, as well as soil lithology bore cataloging and field screening.

PROFESSIONAL EXPERIENCE

06/22 to present Environmental Scientist, PANDEY Environmental, LLC

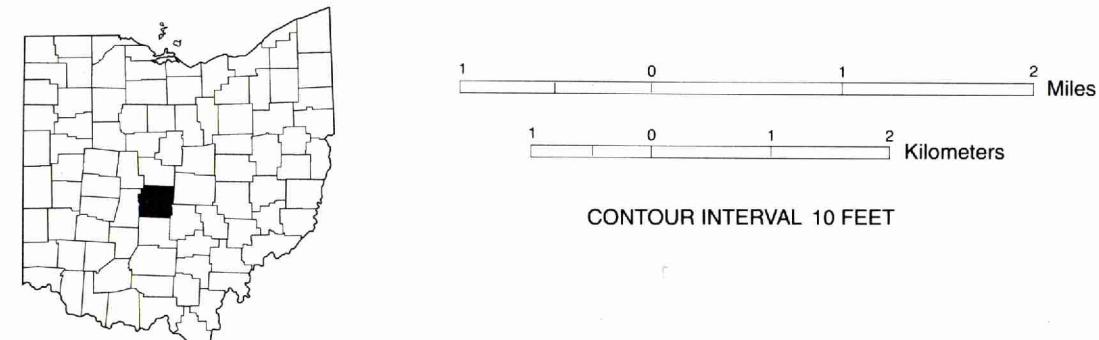
Duties and responsibilities include phase I and II site assessments, remediation oversight, field sampling and collection of soil, air and groundwater samples, general risk assessment for a variety of commercial/industrial clientele and the preparation of various environmental documents through the Ohio Voluntary Action Program.

05/21 to 08/21 Hazwoper/ Environmental Technician, Envirotrac Ltd

Duties and responsibilities included but were not limited to, phase II site assessments, general risk assessment, confined space safety operation, hazardous and otherwise waste removal, 24/7 emergency spill response, regulatory clearance soil sampling.

05/19 to 08/19 *Seasonal Park Technician, Columbus Metropolitan Park District*

Duties and responsibilities included maintenance of grounds, construction of habitat under the federal migratory bird act, provide customer service through knowledge of park rules and answers to general inquiry, maintenance of company vehicles.


ENGINEERING & MODELING SOFTWARE

Knowledge of Microsoft Office (including Word, Outlook, Excel, PowerPoint) and Microsoft Access database management. Usage of GIS (ESRI ArcMap) and soils mapping software (Web Soil Survey).

APPENDIX D
**GROUNDWATER RESOURCES MAP AND ODNR WATER
WELL LOGS**

Ground Water Resources of FRANKLIN COUNTY

by James J. Schmidt

County Line
Township Line

Gravel Pit/Quarry
Disturbed Land

Well Yields

AREAS IN WHICH YIELDS OF 500 TO 1000 OR MORE GALLONS PER MINUTE MAY BE DEVELOPED.

Areas having greatest potential for development of municipal and industrial ground water supplies. Extensive test drilling necessary to locate relatively thick, permeable deposits at depths ranging from 60 to 115 feet. Yields in excess of 1000 gallons per minute developed from large diameter wells.

AREAS IN WHICH YIELDS OF 100 TO 500 GALLONS PER MINUTE MAY BE DEVELOPED.

Limestone-dolomite bedrock is the principal source of supply in the western third of the county. Yields of as much as 250 gallons per minute are developed at depths of less than 300 feet, with greater yields but usually poorer quality at depths of more than 400 feet. Domestic and small industrial supplies of 15 to 25 gallons per minute are available at depths of 65 to 175 feet. Overlying glacial deposits of sand and gravel may yield as much as 20 gallons per minute at depths of about 90 feet.

Regionally extensive, thick, permeable deposits of sand and gravel may yield as much as 500 gallons per minute to large diameter screened wells. Extensive test drilling is recommended to locate coarse deposits at depths of 30 to 200 feet. Bedrock is non-water-bearing shale.

Ground water is obtained from permeable sand and gravel deposits overlying limestone bedrock. Wells may be developed at depths of 50 to 120 feet or developed in the bedrock at depths of 225 feet to yield as much as 350 gallons per minute.

AREAS IN WHICH YIELDS OF 25 TO 100 GALLONS PER MINUTE MAY BE DEVELOPED.

Lenses of sand and gravel thinly scattered in the thin to thick layers of clayey till which overlies non-water-bearing Mississippian or Devonian shale. Properly constructed screened wells may yield 25 to 100 gallons per minute at average depths of 80 to 135 feet, but ranging in depth to 225.

AREAS IN WHICH YIELDS OF 5 TO 25 GALLONS PER MINUTE MAY BE DEVELOPED.

Ground water supplies developed at 60 to 75 feet in the Mississippian sandstone or sandstone and shale bedrock. Yields seldom exceed 20 gallons per minute, although exceptional yields to large diameter wells have exceeded 100 gallons per minute at depths of about 170 feet.

Thin lenses of sand and gravel sparsely interbedded in thick deposits of clayey till. Yields of 5 to 25 gallons per minute may be developed at depths of 25 to more than 150 feet. Exceptional yields are logged at depths of 130 feet. Thick deposits of fine sand and silty clay often prevent the development of domestic supplies at depths of 200 to 300 feet. Wells in Perry Township not encountering a usable aquifer in the glacial deposits may obtain a ground water supply from the limestone bedrock which occurs at depths of 110 to 260 feet below the surface.

AREAS IN WHICH YIELDS OF 3 TO 10 GALLONS PER MINUTE MAY BE DEVELOPED.

Basal portion of shaly sandstone fringe zone of the Berea sandstone yields 4 to 6 gallons per minute from a very limited area at depths of less than 65 feet.

Very limited and often quite shallow glacial deposits of sand and gravel overlying shale bedrock of eroded ancestral drainage channel. Potential yields may not exceed 5 gallons per minute at depths of 15 to 35 feet.

AREAS IN WHICH YIELDS OF LESS THAN 2 GALLONS PER MINUTE MAY BE DEVELOPED.

Devonian and Mississippian shale bedrock yields less than 2 gallons per minute at depths of less than 100 feet. Occasionally, thin lenses of sand and gravel may be encountered near the surface of the weathered shale at depths of 18 to 45 feet and yield as much as 5 gallons per minute. If sand and gravel is not present, home owners rely upon cisterns and additional storage to develop a supply for peak demand. Devonian limestone beneath the shale in Perry and Sharon Townships yield larger supplies. Proper well construction may deter presence of hydrogen sulfide.

Areas which may contain hydrogen sulfide in the limestone bedrock and Berea sandstone. Ground water in the limestone bedrock may also be highly mineralized; however, this water is potable and free of excessive chlorides.

Ancestral buried bedrock channels partially filled with clay and sand and gravel as much as 260 feet overlying limestone bedrock.

Relatively thick lenses of fine silty sand in buried valley deposits.

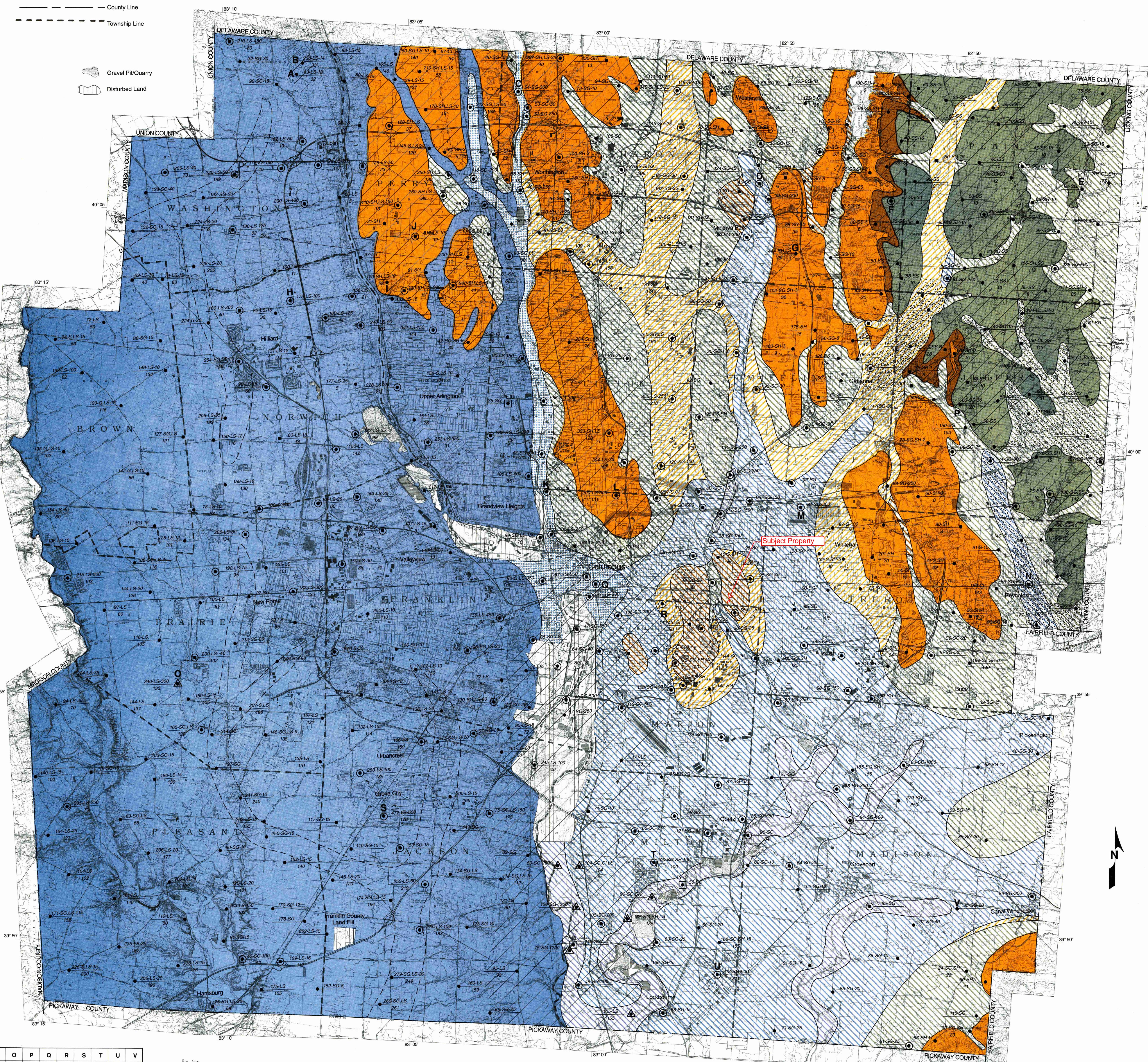
Well Site Symbols

WELL INFORMATION (SEE NOTE)

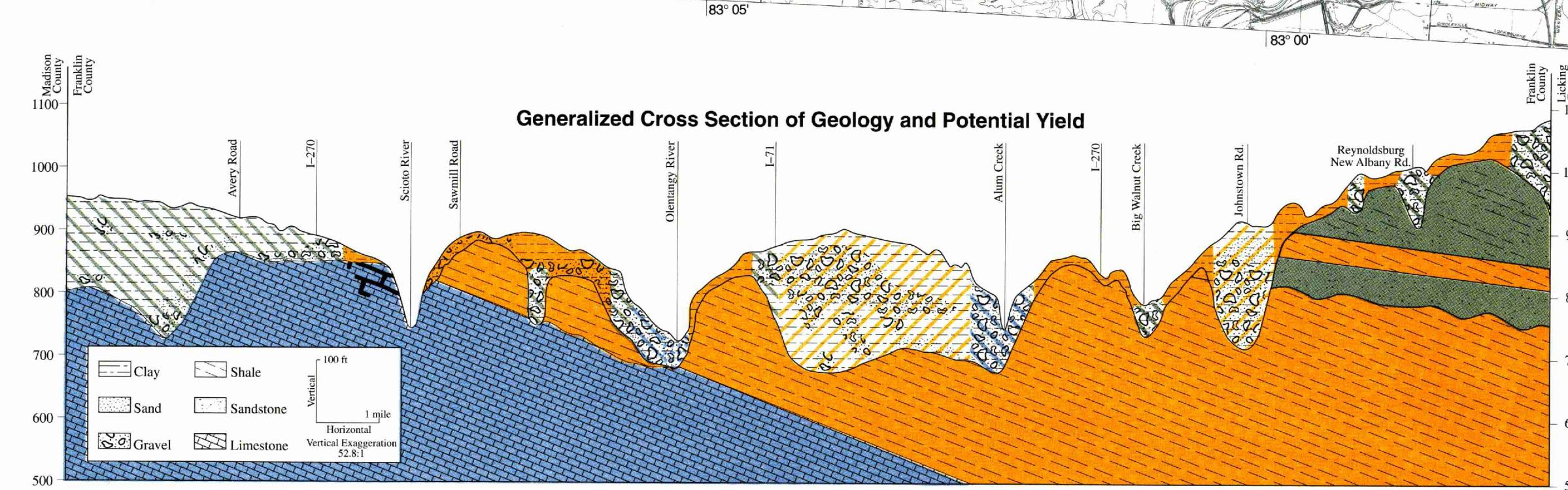
DEPTH (ft.) Total depth of well in feet.
WELL SITE Approximate well location
75-SS-20 26 DEPTH TO BEDROCK (ft.) Depth to bedrock in feet.

WELL TYPES

- Well Site
- Municipal-Industrial Well
- Observation Well Site
- Test Well*
- Chemical Analyses


AQUIFER TYPES

- S - Sand
- G - Gravel
- SG - Sand & Gravel
- SS - Sandstone
- SH - Shale
- LS - Limestone
- CL - Clay
- FS - Fine Sand


Chemical Analysis Table

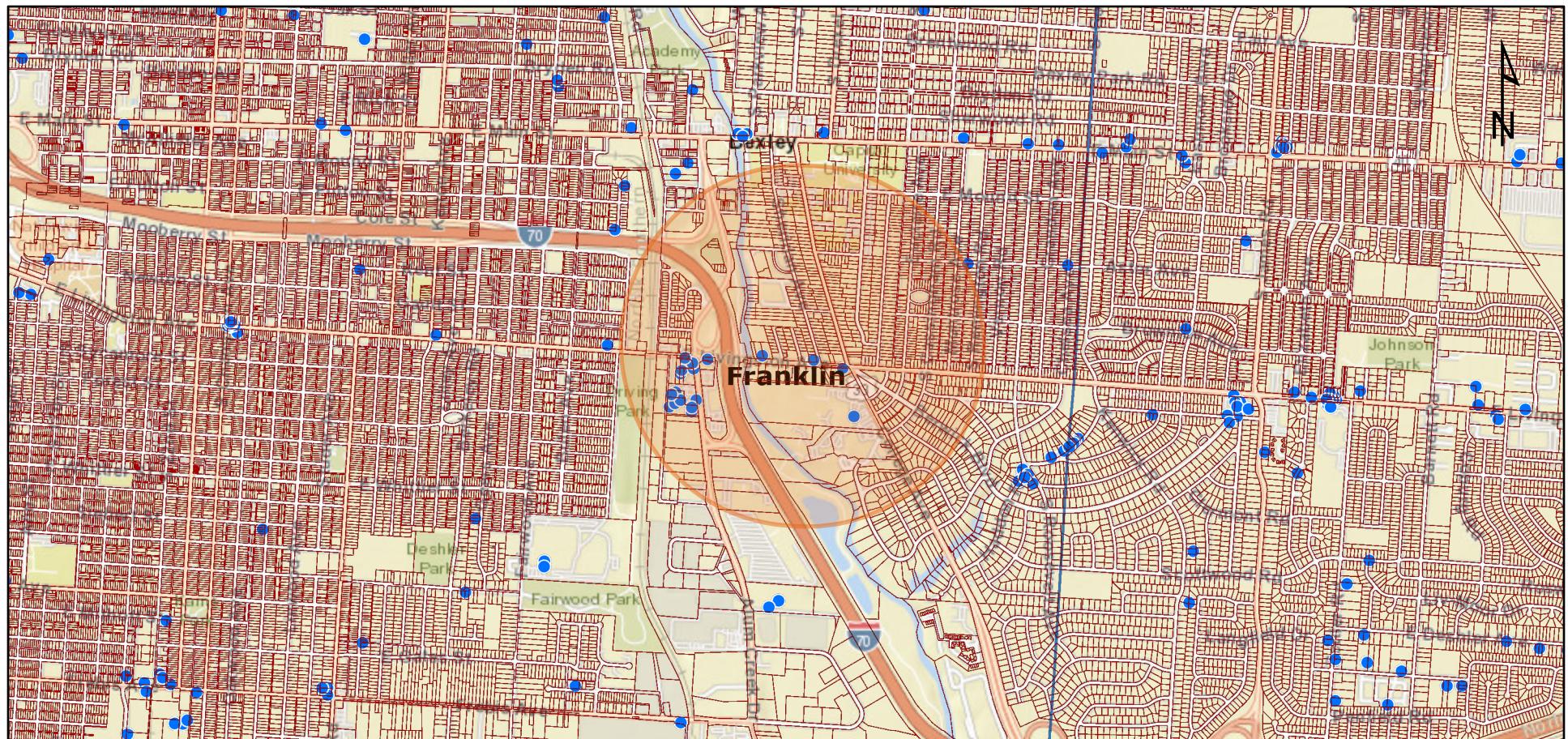
Well Site	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V
Depth	93	230	—	40	92	67	444	175	211	175	18	400	81	86	340	63	214	260	290	98	232	35
Aquifer	LS	LS	S&G	S&G	—	SS	LS	LS	LS	LS	S&G	S&G	LS	SS	LS	LS	LS	S&G	S&G	S&G	S&G	
Iron	6.1	2.7	5.8	3.0	4.0	2.8	.04	.55	.59	3.6	.58	.77	2.4	4.2	1.0	.39	1.6	1.2	.29	1.9	.75	
Hardness as CaCO ₃	1930	1500	574	452	501	279	2090	443	317	384	530	1730	390	560	620	528	925	1305	745	316	390	302
Dissolved Solids	—	—	600	591	364	4950	500	595	519	662	2462	425	740	831	718	1428	1716	986	354	434	390	
Sulfate	1520	870	—	155	116	98	1180	102	85	124	229	1451	50	—	400	250	594	942	520	53	28	24
Chloride	—	12	36	21	2.5	4.3	1820	2.0	11	3.0	14	45	7.5	77	1.7	5.2	137	38	5.0	2.4	6.0	2.8
Fluoride	—	—	—	.4	.6	.3	.9	1.1	1.0	2.1	1.1	1.8	.5	.2	1.8	.2	.5	1.4	.6	.1	.4	1.4
Hydrogen Sulfide	—	—	—	—	—	Trace	—	—	.7	—	—	—	3.4	3.0	22	—	—	—	—	—	—	—

Chemical constituents as milligrams per liter (mg/l)
A- casing set @ 36 feet
B- casing set @ 175 feet (thru Columbus Limestone)
C- bottom 500'

Generalized Cross Section of Geology and Potential Yield

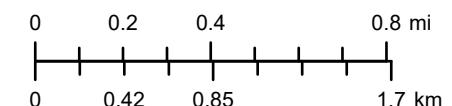
Observation well sites indicate the location of wells used to collect ground water level information. These wells are part of the state observation well network. Hydrographs of the water levels recorded in these and other State observation wells can be obtained through ODNR-Division of Water.

*Test well sites indicate the location of a test well that was part of a regional ground water study. Detailed lithologic logs, water quality analysis and pumping test information for these wells may be available from ODNR-Division of Water.


NOTE
The ground water characteristics have been mapped regionally, based upon interpretations of water well records and the areas geology and hydrology. Mapped well sites were selected as typical for the areas shown.
Information regarding specific sites may be obtained from ODNR-Division of Water.

Published 1958
Revised 1993
Ohio Department of Natural Resources
Division of Water
Ground Water Resources Section
1939 Fountain Square
Columbus, Ohio 43224

Ohio
Georgi V. Vovovich
State Geologist
Frances S. Buchholzer
Director


OHIO
Georgi V. Vovovich
State Geologist
Frances S. Buchholzer
Director

948 Ferndale

- Statewide Parcels
- Current Township
- Counties
- Well Logs

Scale: 1:36,112

WELL LOG AND DRILLING REPORT

Ohio Department of Natural Resources, Division of Water
1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739

768062

Permit Number 95-238COUNTY FranklinTOWNSHIP MadisonSECTION/LOT No. 2253
(CIRCLE ONE)OWNER/BUILDER
(CIRCLE ONE OR BOTH) Van-VenPROPERTY ADDRESS 2253 Livingston Ave.

(ADDRESS OF WELL LOCATION A)

LOCATION OF PROPERTY Columbus, Ohio

CONSTRUCTION DETAILS

CASING		Borehole Diameter <u>8 1/2</u> in.		GROUT	
<input type="checkbox"/> Diameter	<u>4</u>	in.	Length <u>20</u> ft.	Wall Thickness <u>.10</u> in.	Material <u>Hole Plug</u>
<input type="checkbox"/> Diameter		in.	Length	Wall Thickness	Volume used <u>150 lbs.</u>
Type:	<input type="checkbox"/> Steel <u>Steel</u>	<input type="checkbox"/> Alum.	<input type="checkbox"/> PVC <u>PVC</u>		Method of installation <u>Turn</u>
Joints:	<input type="checkbox"/> Threaded <u>Threaded</u>	<input type="checkbox"/> Welded <u>Welded</u>	<input type="checkbox"/> Solvent <u>Solvent</u>		Depth: placed from <u>8.0</u> ft. to <u>2.0</u> ' ft.
Liner:	Length	Type	Wall Thickness	in.	GRAVEL PACK (Filter Pack)
SCREEN	Type (wire wrapped, louvered, etc.) <u>Louvered</u>		Material <u>PVC</u>	Material <u>Sand & Gravel</u>	Volume used <u>300 lbs.</u>
Length	<u>20.0</u> ft.	Diameter <u>4"</u> in.		Method of installation <u>Turn</u>	
Set between	<u>20.0</u> ft. and	<u>10.0</u> ft.	Slot <u>.10</u>	Depth: placed from <u>20.0</u> ft. to <u>8.0</u> ft.	
<input type="checkbox"/> Pitless Device <input type="checkbox"/> Adapter <input type="checkbox"/> Preassembled unit <input type="checkbox"/> Use of Well <input type="checkbox"/> Rotary <input type="checkbox"/> Cable <input checked="" type="checkbox"/> Augered <input type="checkbox"/> Driven <input type="checkbox"/> Dug <input type="checkbox"/> Other <input type="checkbox"/> Date of Completion <u>6-21-95</u>					

WELL LOG*

INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.

Show color, texture, hardness, and formation:
sandstone, shale, limestone, gravel, clay, sand, etc.

From

To

A wet brown stiff sand gravel 15.0 17.8

<input type="checkbox"/> Bailing	<input type="checkbox"/> Pumping*	<input type="checkbox"/> Other
Test rate	gpm	Duration of test
Drawdown		hrs.
Measured from:	<input type="checkbox"/> top of casing <input type="checkbox"/> ground level	<input type="checkbox"/> Other
Static Level (depth to water)	ft.	Date:
Quality (clear, cloudy, taste, odor)		

(*Attach a copy of the pumping test record, per section 1521.05, ORC)

PUMP

Type of pump _____ Capacity _____ gpm
 Pump set at _____ ft.
 Pump installed by _____

SKETCH SHOWING WELL LOCATION

Show distances well lies from numbered state highways,
street intersections, county roads, etc.

N

W

E

Livingston Ave.257976Bldg.

S

*If additional space is needed to complete well log, use next consecutively numbered form.

I hereby certify the information given is accurate and correct to the best of my knowledge.

Drilling Firm Belasco Drilling Services

Signed

J.R. MusseyAddress 6919 American Parkway

Date

City, State, Zip Col. OH

ODH Registration Number _____

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.

ORIGINAL COPY TO - ODNR, DIVISION OF WATER, 1939 FOUNTAIN SQ. DRIVE, COLS., OHIO 43224

Blue - Customer's copy Pink - Driller's copy Green - Local Health Dept. copy

5672

WELL LOG AND DRILLING REPORT

ORIGINAL

State of Ohio
 DEPARTMENT OF NATURAL RESOURCES
 Division of Water
 1500 Dublin Road
 Columbus, Ohio

No. 183372

County Franklin Township Mayfield Section of Township _____

Owner National Aluminum Co. Address Columbus, Ohio

Location of property 1133 Aluminum Creek Drive (Rear of bldg.)

CONSTRUCTION DETAILS

BAILING OR PUMPING TEST

Casing diameter 8" Length of casing 35
 Type of screen Johnson Length of screen 12'
 Type of pump D.W. Turbine
 Capacity of pump 100 G.P.M.
 Depth of pump setting 30'
 Date of completion 3/1/57

Pumping rate 100 G.P.M. Duration of test 4 hrs.
 Drawdown 5 ft. Date 3/28/57
 Developed capacity Above
 Static level—depth to water 22' ft.
 Pump installed by US

WELL LOG

SKETCH SHOWING LOCATION

Formations	From	To
Sandstone, shale, limestone, gravel and clay		
Clayey gravel	0 Feet	<u>24</u> Ft.
Sand, gravel	<u>24</u>	<u>42</u>
Sand & gravel + clay chunks	<u>42</u>	<u>45</u>

Locate in reference to numbered
 State Highways, St. Intersections, County roads, etc.

N.

W.

E.

S.

See reverse side for instructions

Drilling Firm John Baker OilAddress Columbus, OhioDate 3/30/57Signed John Baker

WELL LOG AND DRILLING REPORT

154

ORIGINAL

State of Ohio
DEPARTMENT OF NATURAL RESOURCES
Division of Water
Columbus, Ohio

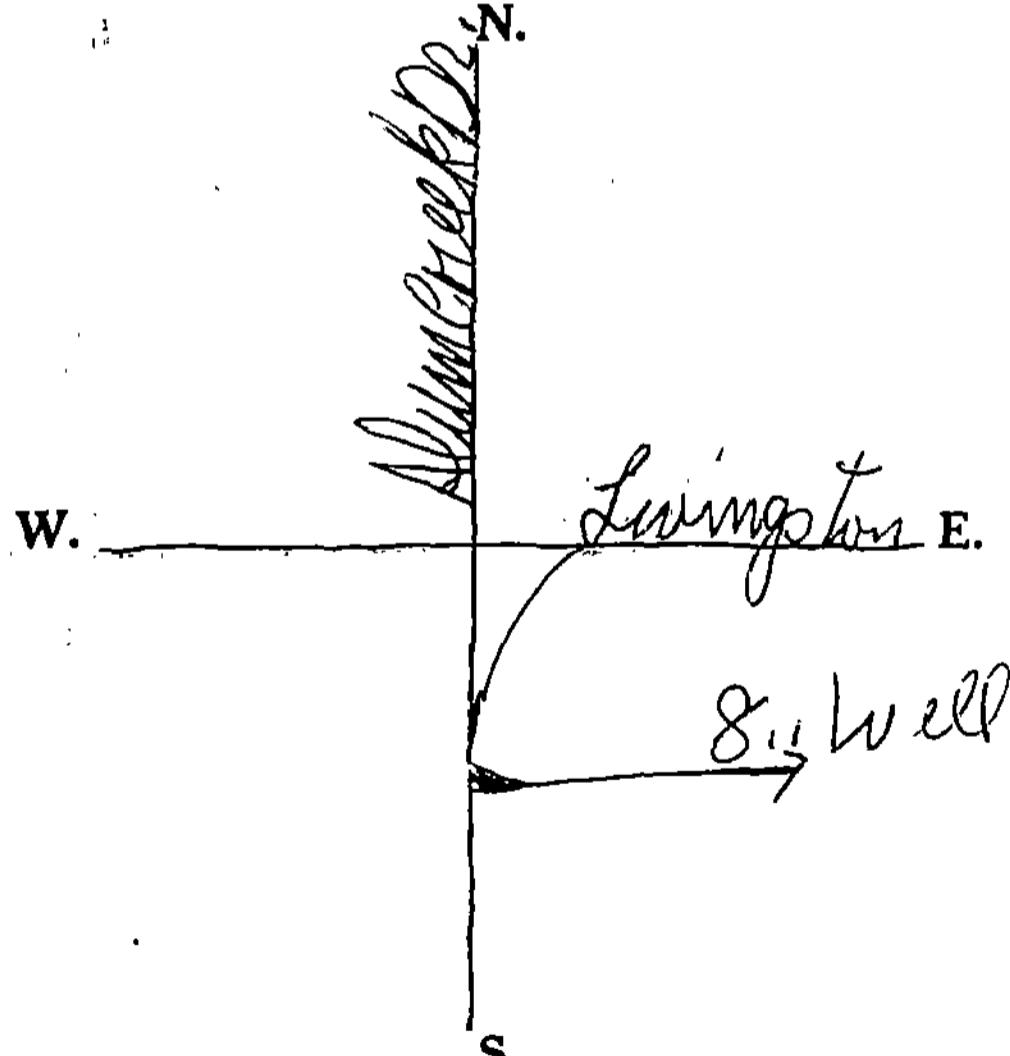
Nº 162198

County Franklin Township Marion Section of Township
or Lot Number.....
Owner Columbus Cement Address Columbus Ohio
Location of property 1165 Plum Creek Drive.

CONSTRUCTION DETAILS

Casing diameter 8" Length of casing 18
Type of screen APNE Length of screen 12'-
Type of pump Myers Submersible
Capacity of pump 50 G.P.M
Depth of pump setting 37-6"

PUMPING TEST


Pumping rate 50 G.P.M. Duration of test 8 hrs.
Drawdown 10 ft. Date 9/21/57
Developed capacity 8-207 TEST
Static level—depth to water 27 ft.
Pump installed by R. H. Goodwin

WELL LOG

SKETCH SHOWING LOCATION

Formations Sandstone, shale, limestone, gravel and clay	From	To
CLAY-	0 Feet Ft.
CLAY + Gravel	6	19
Brown Gravel	19	27
Clean Gravel	27	40

Locate in reference to numbered
State Highways, St. Intersections, County roads, etc.

See reverse side for instructions

Date..... 8/21/57 -
Signed..... R. B. Goodwin

Drilling Firm R.H. Goodwin
Address 4005 E. Livingston

WELL LOG AND DRILLING REPORT

State of Ohio
DEPARTMENT OF NATURAL RESOURCESDivision of Water
1500 Dublin Road
Columbus, Ohio

No. 210792

County Franklin Township Franklin Section of Township

Owner Jewish Center Address

Location of property 1175 College Ave - Park Area

CONSTRUCTION DETAILS

BAILING OR PUMPING TEST

Casing diameter 10"	Length of casing	Pumping rate G.P.M. Duration of test hrs.
Type of screen None	Length of screen	Drawdown ft. Date
Type of pump		Developed capacity
Capacity of pump		Static level—depth to water ft.
Depth of pump setting		Pump installed by
Date of completion		

WELL LOG

SKETCH SHOWING LOCATION

Formations Sandstone, shale, limestone, gravel and clay	From	To	Locate in reference to numbered State Highways, St. Intersections, County roads, etc.
Fill	0 Feet	6 Ft.	N.
Clay + gravel	8	26	
Clay + sand	26	37	
Clay + gravel	37	41	
"	41	48	
Shale	48	52	
			Hole abandoned. little or no water
			W. E.
			S.

See reverse side for instructions

Drilling Firm H. M. Boggs & Son

Address 1175 College Ave

Date 7/10/59

Signed H. M. Boggs

DEPARTMENT OF NATURAL RESOURCES
DIVISION OF WATER

Co. *25* Franklin Twp. *City S* Sec.

Owner *National Aluminum Co.*
Address *1133 Alum Creek Drive*
Well location *Columbus Ohio*

Construction Details	Pumping Test
Casing: Diam. <i>12"</i> length <i>34'</i>	Rate: <i>✓</i>
Screen:	Hrs: <i>✓</i>
Type of pump:	D. D. <i>✓</i>
Capacity:	S.L. <i>17'</i>
Depth of setting:	Date <i>✓</i>

Owner's Well No. *G. M. Baker and Son Inc.*
Driller *jjs*
Located by *jjs* Date *✓*

Remarks *✓*

Office No. *1905 jjs*
Log form No. *43498*
Quad. *Franklin*

STRATA	Depth	
	From	To
Elevation		
Top Soil	0	3
Clay and Gravel	3	24
Sand and Gravel	24	39

3

X = 1,875,100
Y = 709,500 - 5

* Approximate Location

DEPARTMENT OF NATURAL RESOURCES
DIVISION OF WATER

Z5
Franklin Co. Twp. 4 Sec.

Owner. National Aluminum Co.
Address. 1133 Alum Creek Drive
Well location. Cols. Ohio

Construction Details	Pumping Test
Casing: Diam. 6"	length 70'
Screen:	Rate: ✓
Type of pump:	Hrs.:
Capacity:	D.D.:
Depth of setting:	S.L. 78'
	Date.

Owner's Well No. G. M. Baker and Son Inc.
Driller. Located by. JJS Date.

Remarks.

Office No. 1904 jjs
Log form No. 43499
Quad. Franklin

STRATA	Depth	
	From	To
Elevation.		
Top Soil	0	4
Clay and Gravel	4	22
Sand and Gravel		
Dirty	22	
Sand and Gravel		
Clean	35	
Clay and Sand	37	
Fine Sand	50	
Clay	65	
Black Shale	68	90
Soapstone	90	136
Brown Shale	136	180
Brown Limestone	180	230
Gray Limestone	230	300

$X = 1875100$
 $Y = 709500-S$

*Approximate Location

WELL LOG AND DRILLING REPORT

715871

TYPE OR USE PEN
SELF TRANSCRIBING
PRESS HARD

Ohio Department of Natural Resources, Division of Water

1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739

Permit Number 90-360

COUNTY FRANKLIN

TOWNSHIP

Columbus, OH

SECTION/LOT NO.
(CIRCLE ONE)OWNER/BUILDER
(CIRCLE ONE OR BOTH)

Sterling Motors

PROPERTY ADDRESS 2182 E. LIVINGSTON AVE.
(ADDRESS OF WELL LOCATION A)

LOCATION OF PROPERTY

Sheridan & E. Livingston Ave.

CONSTRUCTION DETAILS

CASING	Borehole Diameter	in.	GROUT					
1 Diameter	in.	Length	ft.	Wall Thickness	in.	Material	Volume used	
2 Diameter	in.	Length	ft.	Wall Thickness	in.	Method of installation		
Type:	1 Steel 2 Galv.	1 PVC 2 Other				Depth: placed from	ft. to	ft.
Joints:	1 Threaded 2 Welded	1 Solvent 2 Other				GRAVEL PACK (Filter Pack)		
Liner:	Length	Type		Wall Thickness	in.	Material	Volume used	
SCREEN						Method of installation		
Type (wire wrapped, louvered, etc.)		Material				Depth: placed from	ft. to	ft.
Length	ft.	Diameter		in.		Pitless Device	<input type="checkbox"/> Adapter	<input type="checkbox"/> Preassembled unit
Set between	ft. and	ft.	Slot			Use of Well		

WELL LOG*

INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.

Show color, texture, hardness, and formation:

sandstone, shale, limestone, gravel, clay, sand, etc.

From

To

WELL TEST

<input type="checkbox"/> Bailing	<input type="checkbox"/> Pumping*	<input type="checkbox"/> Other	
Test rate	gpm	Duration of test	hrs.
Drawdown			ft.
Measured from:	<input type="checkbox"/> top of casing	<input type="checkbox"/> ground level	<input type="checkbox"/> Other
Static Level (depth to water)	ft.	Date:	
Quality (clear, cloudy, taste, odor)			

*(Attach a copy of the pumping test record, per section 1521.05, ORC)

PUMP

Type of pump	Capacity	gpm
Pump set at		ft.
Pump installed by		

SKETCH SHOWING WELL LOCATION

Show distances well lies from numbered state highways,
street intersections, county roads, etc.

N

W

E

S

DNR 7802.90

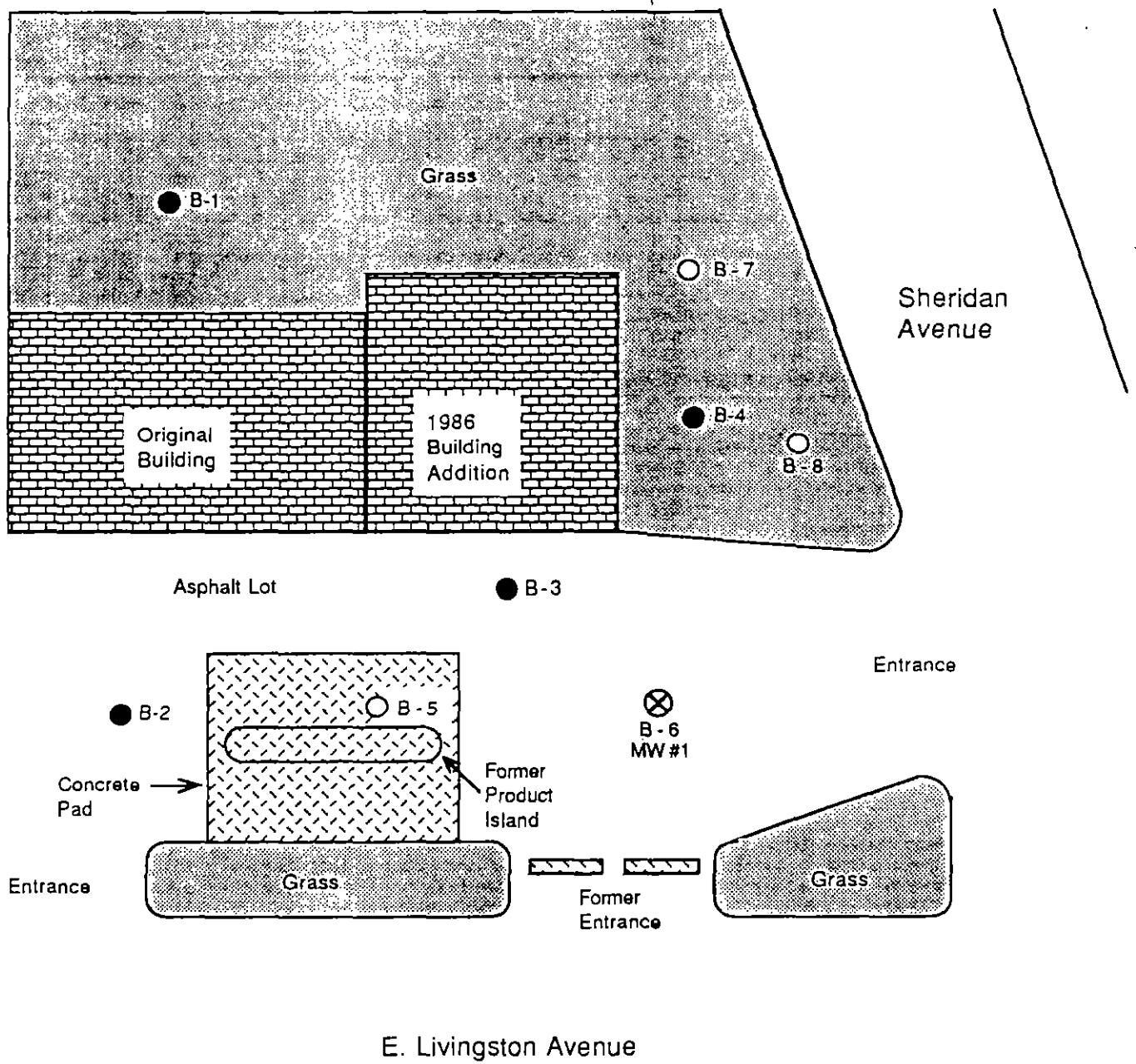
*If additional space is needed to complete well log, use next consecutively numbered form.

Signed

May 15, 1991

ODH Registration Number

Date


Drilling Firm Belasco Drilling
Address 6919 Americana Dr. Hwy
City, State, Zip Columbus, OH 43061

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.

ORIGINAL COPY TO - ODNR, DIVISION OF WATER, 1939 FOUNTAIN SQ. DRIVE, COLS., OHIO 43224

Blue - Customer's copy Pink - Driller's copy Green - Local Health Dept. copy

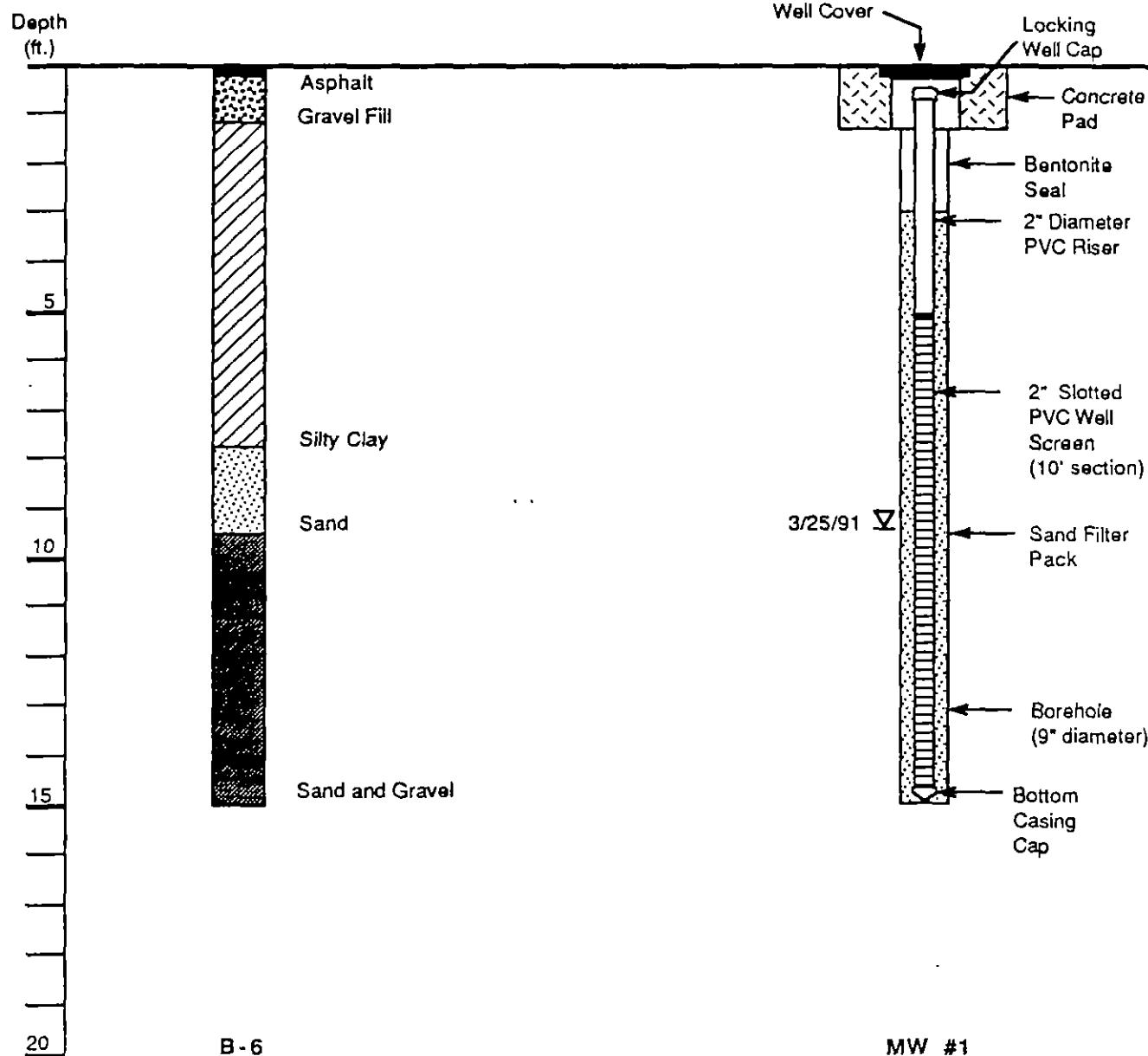
BancOhio National Bank
Sterling Motors Site, 2182 E. Livingston Avenue, Columbus, Ohio

N
1

LEGEND

- Monitoring Well Location
- Soil Boring Location (3/18/91)
- Soil Boring Location (11/14/90)

Approximate Scale: 1" = 20'


Figure 1. Site Diagram

**TERRA
TECHNOLOGIES, INC.**
Environmental Testing and Consulting

715871C

BancOhio National Bank
Sterling Motors Site, 2182 E. Livingston Avenue, Columbus, Ohio

LEGEND

Asphalt	Concrete	● Field Sample Point
Gravel fill	Bentonite grout	⊕ Lab & Field Sample Point
Silty clay	Sand	▽ Static Water Level
Sand & gravel		

Figure 3. Monitoring Well Diagram

TERRA
TECHNOLOGIES, INC.
 Environmental Testing and Consulting

WELL LOG AND DRILLING REPORT

Ohio Department of Natural Resources, Division of Water

1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739

758419

Permit Number _____

TYPE OR USE PEN
SELF TRANSCRIBING
PRESS HARD

COUNTY Franklin TOWNSHIP Columbus SECTION/LOT No. _____
 (CIRCLE ONE)

OWNER/BUILDER BP oil PROPERTY ADDRESS 1971 E. Livingston Ave
 (ADDRESS OF WELL LOCATION A)

LOCATION OF PROPERTY S. of excavation pit

CONSTRUCTION DETAILS

CASING Borehole Diameter _____ in. GROUT _____

Diameter _____ in. Length _____ ft. Wall Thickness _____ in. Material _____ Volume used _____

Diameter _____ in. Length _____ ft. Wall Thickness _____ in. Method of installation _____

Type: Steel Galv. PVC 1
 2 Other _____

Joints: Threaded Welded Solvent 1
 2 Other _____

Liner: Length _____ Type _____ Wall Thickness _____ in. Depth: placed from _____ ft. to _____ ft.

SCREEN Material _____ Volume used _____

Type (wire wrapped, louvered, etc.) _____ Material _____

Length _____ ft. Diameter _____ in. Method of installation _____

Set between _____ ft. and _____ ft. Slot _____ Date of Completion _____

WELL LOG*

INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.

Show color, texture, hardness, and formation:
sandstone, shale, limestone, gravel, clay, sand, etc.

From _____ To _____

Bailing Pumping* Other _____

Test rate _____ gpm Duration of test _____ hrs.

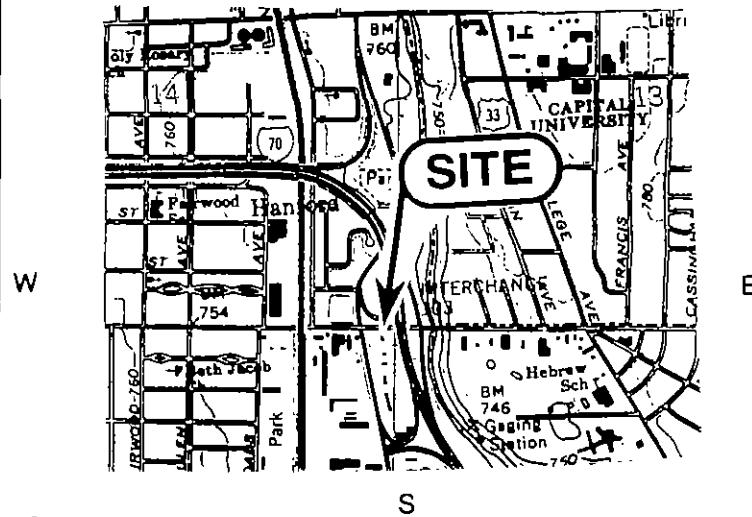
Drawdown _____ ft.

Measured from: top of casing ground level Other _____

Static Level (depth to water) _____ ft. Date: _____

Quality (clear, cloudy, taste, odor) _____

*(Attach a copy of the pumping test record, per section 1521.05, ORC)


PUMP

Type of pump _____ Capacity _____ gpm
 Pump set at _____ ft.
 Pump installed by _____

SKETCH SHOWING WELL LOCATION

Show distances well lies from numbered state highways,
street intersections, county roads, etc.

N

*If additional space is needed to complete well log, use next consecutively numbered form.

Drilling Firm BEISigned J. HarperAddress 1971 Venture St.Date 7/27/92City, State, Zip Granbyport, OH 43125

ODH Registration Number _____

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.

ORIGINAL COPY TO - ODNR, DIVISION OF WATER, 1939 FOUNTAIN SQ. DRIVE, COLS., OHIO 43224

Blue - Customer's copy Pink - Driller's copy Green - Local Health Dept. copy

758419B

BORING/WELL LOG		BORING /WELL NO. MW-1
Page <u>1</u> of <u>1</u>		
LOCATION: <u>BP COLUMBUS, OH #07723</u>	DRILLING CONTRACTOR: <u>BURLINGTON</u>	
PROJECT NO.: <u>8028-9</u>	DRILLER: <u>BARRY SOMNERS</u>	
DRILLING STARTED: <u>3/16/92</u> (<u>10:30</u> <u>Am</u>)	DRILLING ENDED: <u>3/16/92</u> (<u>11:15</u> <u>A</u> <u>m</u>)	
DRILLING METHOD/RIG TYPE: <u>4.25-INCH</u>	BOREHOLE DIAMETER: <u>9-INCH NOMINAL</u>	
<u>HSA's</u>	COMMENTS: _____	
LOGGED BY: _____	WATER QUALITY DATA: _____	
GROUND ELEVATION <u>799.90</u> <u>FT.</u>	_____	
PROTECTIVE CASING ELEV. <u>799.65</u> <u>FT.</u>	_____	
WELL CASING (MEASURING POINT) ELEVATION <u>799.65</u> <u>FT.</u> DEPTH TO WATER: <u>19.39</u> <u>FT.</u>	_____	

DEPTH (FT.)	SAMPLE NO.	BLOW COUNTS	LITHOLOGIC DESCRIPTION	WELL CONSTRUCTION	REMARKS & COMMENTS
0			0.3.0 FT. HAND AUGER, NO SAMPLE. 0-1.0 FT. PAVEMENT. 1.0-3.0 FT. BROWN SILTY CLAY WITH GRAVEL, NO ODOR		HNU ISOBUTYLENE HEADSPACE PPM
5	2/2				1 PPM
	3/7		5.0-7.0 FT. BROWN SILTY CLAY WITH SAND, DAMP, NO ODOR		
10	8/14				1 PPM
	16/				
	12		10.0-12.0 FT. DARK BROWN SILTY CLAY WITH GRAVEL, DAMP, NO ODOR.		
15	22/				1 PPM
	32/				
	45/		15.0-17.0 FT. DARK BROWN SILTY CLAY WITH GRAVEL, DAMP, NO ODOR.		
	50				
20	10/		20.0-22.0 FT. GRAY SAND W/GRAVEL, MOIST, NO ODOR		1 PPM
	26/				
	32/				
	30				
25	16/		25.0-27.0 FT. GRAY GRAVEL AND SAND, WET, NO ODOR		1 PPM
	28/				
	30/				
	32		BOH AT 23.0 FT (HEAVING SAND)		

WELL LOG AND DRILLING REPORT

Ohio Department of Natural Resources, Division of Water

1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739

Permit Number _____

758420

TYPE OR USE PEN
SELF TRANSCRIBING
PRESS HARDCOUNTY FranklinTOWNSHIP ColumbusSECTION/LOT No.
(CIRCLE ONE)OWNER/BUILDER
(CIRCLE ONE OR BOTH)BP oilPROPERTY ADDRESS 1971 e. Livingston Ave
(ADDRESS OF WELL LOCATION A)LOCATION OF PROPERTY n. of excavation pit

CONSTRUCTION DETAILS

CASING

Borehole Diameter _____ in.

GROUT

 Diameter _____ in. Length _____ ft. Wall Thickness _____ in. Material _____ Volume used _____ Diameter _____ in. Length _____ ft. Wall Thickness _____ in. Method of installation _____

Depth: placed from _____ ft. to _____ ft.

Type: Steel Galv. PVC Other _____

GRAVEL PACK (Filter Pack)

Joints: Threaded Welded Solvent Other _____

Material _____ Volume used _____

Liner: Length _____ Type _____ Wall Thickness _____ in. Depth: placed from _____ ft. to _____ ft.

Method of installation _____

SCREEN

 Pitless Device Adapter Preassembled unit

Type (wire wrapped, louvered, etc.) _____ Material _____

Length _____ ft. Diameter _____ in. Rotary Cable Augered Driven Dug Other _____

Set between _____ ft. and _____ ft. Slot _____ Date of Completion _____

WELL LOG*

WELL TEST

INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.

Show color, texture, hardness, and formation:
sandstone, shale, limestone, gravel, clay, sand, etc.

From _____ To _____

 Bailing Pumping* Other _____

Test rate _____ gpm Duration of test _____ hrs.

Drawdown _____ ft.

Measured from: top of casing ground level Other _____

Static Level (depth to water) _____ ft. Date: _____

Quality (clear, cloudy, taste, odor) _____

*(Attach a copy of the pumping test record, per section 1521.05, ORC)

PUMP

Type of pump _____ Capacity _____ gpm

Pump set at _____ ft.

Pump installed by _____

SKETCH SHOWING WELL LOCATION

Show distances well lies from numbered state highways,
street intersections, county roads, etc.

N

758420 B

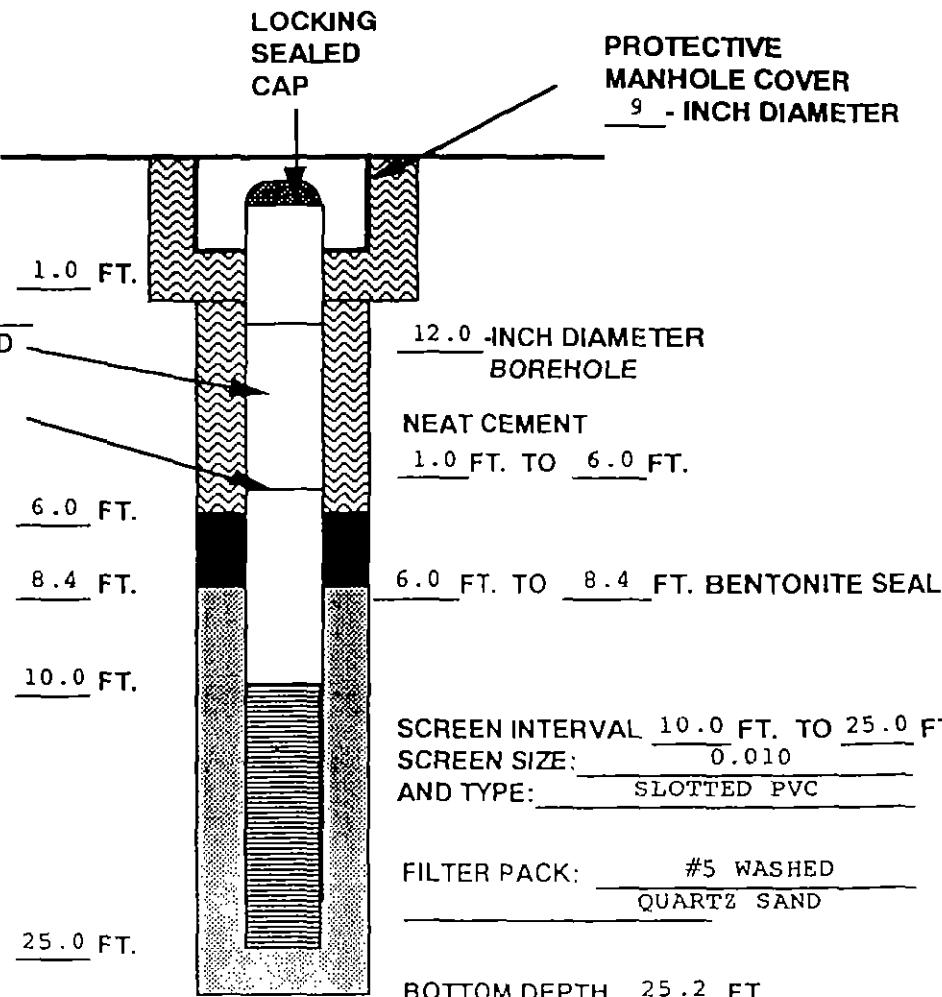
BORING/WELL LOG		BORING /WELL NO. MW-2
Page 1 of 1		
LOCATION: BP COLUMBUS, OH #07723 PROJECT NO.: 8028-9 DRILLING STARTED: 3/16/92 (12:15 Pm) DRILLING METHOD/RIG TYPE: 4.25-INCH BSA's LOGGED BY: GROUND ELEVATION 799.56 FT. PROTECTIVE CASING ELEV. 799.31 FT. WELL CASING MEASURING POINT ELEVATION 799.31 FT. DEPTH TO WATER: 18.97 FT.	DRILLING CONTRACTOR: BURLINGTON DRILLER: BARRY SOMMERS DRILLING ENDED: 3/10/92 (14:01 Pm) BOREHOLE DIAMETER: 9-INCH NOMINAL COMMENTS: WATER QUALITY DATA: _____ _____ _____	

DEPTH (FT.)	SAMPLE NO.	BLOW COUNTS	LITHOLOGIC DESCRIPTION	WELL CONSTRUCTION	REMARKS & COMMENTS
0			0-3.0 FT. HAND AUGER, NO SAMPLE. 0-1.0 FT. PAVEMENT. 1.0-3.0 FT. BROWN SILTY CLAY, DAMP, NO ODOR		HNU ISOBUTYLENE HEADSPACE PPM
5	10/				
5	-18/		5.0-7.0 FT. LIGHT BROWN SILTY SAND		3 PPM
5	-16/		WITH LIMESTONE CLASTS, DRY, NO ODOR		
5	11				
10	8/17				
10	/25		10.0-12.0 FT. DARK GRAY SILTY CLAY		0 PPM
10	/27		WITH GRAVEL, DRY, NO ODOR		
15	14/				
15	30/		15.0-17.0 FT. DARK GRAY SILTY CLAY		1 PPM
15	45/		WITH GRAVEL, DRY, NO ODOR		
15	50				
20	12/				
20	25/		20.0-22.0 FT. DARK GRAY COARSE SAND		0 PPM
20	29/		AND GRAVEL WITH SILTY CLAY, WET, NO		
20	17		ODOR		
25			BOH AT 25.0 FT		

758420C

WELL CONSTRUCTION LOG

WELL NO.: MW-2
 CLIENT: BP OIL
 PROJECT: #07723
 PROJECT NO.: 8028-9
 GROUND SURFACE
 ELEVATION: 799.56 FT.
 MEASURING POINT
 ELEVATION: 799.31 FT.
 INSTALLED BY: _____


DATE INSTALLED: 3/16/92
 LOCATION: NORTH OF EXCAVATION PIT
BOREHOLE INSTALLATION
 METHOD: 6.25-INCH HSA'S
 DRILLER: BURLINGTON
 STATIC DEPTH TO
 WATER: 18.97 FT.
 DATE DEVELOPED: 3/16/92
 WELL STATUS: COMPLETE

GROUND SURFACE
 AND
 ELEVATION: 799.56 FT.

MEASURING POINT
 ELEVATION: 799.31 FT.

CASING TYPE: PVC
 AND DIAMETER: 4.0 IN. ID

RISER PIPE SIZE AND JOINT
 TYPE: 4.0 INCH ID
 FLUSH THREADED

(NOT TO SCALE)
 4/91 FLUSH MOUNT

WELL LOG AND DRILLING REPORT

TYPE OR USE PEN
SELF TRANSCRIBING
PRESS HARDOhio Department of Natural Resources, Division of Water
1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739

758421

Permit Number _____

COUNTY Franklin

TOWNSHIP

ColumbusSECTION/LOT No.
(CIRCLE ONE)OWNER/BUILDER
(CIRCLE ONE OR BOTH)BP oil

PROPERTY ADDRESS

1921 E. Livingston Ave
(ADDRESS OF WELL LOCATION A)

LOCATION OF PROPERTY

W. of Pump Islands

CONSTRUCTION DETAILS

CASING

Borehole Diameter _____ in.

GROUT

 Diameter _____ in. Length _____ ft. Wall Thickness _____ in. Material _____ Volume used _____ Diameter _____ in. Length _____ ft. Wall Thickness _____ in. Method of installation _____Type: Steel Galv. PVC Depth: placed from _____ ft. to _____ ft.Joints: Threaded Welded Solvent Other _____

Liner: Length _____ Type _____ Wall Thickness _____ in. Material _____ Volume used _____

Method of installation _____

SCREEN

Type (wire wrapped, louvered, etc.) _____ Material _____

Length _____ ft. Diameter _____ in. Rotary Cable Augered Driven Dug Other _____

Set between _____ ft. and _____ ft. Slot _____ Date of Completion _____

WELL LOG*

WELL TEST

INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.

Show color, texture, hardness, and formation:
sandstone, shale, limestone, gravel, clay, sand, etc.

From _____

To _____

 Bailing Pumping* Other _____

Test rate _____ gpm Duration of test _____ hrs.

Drawdown _____ ft.

Measured from: top of casing ground level Other _____

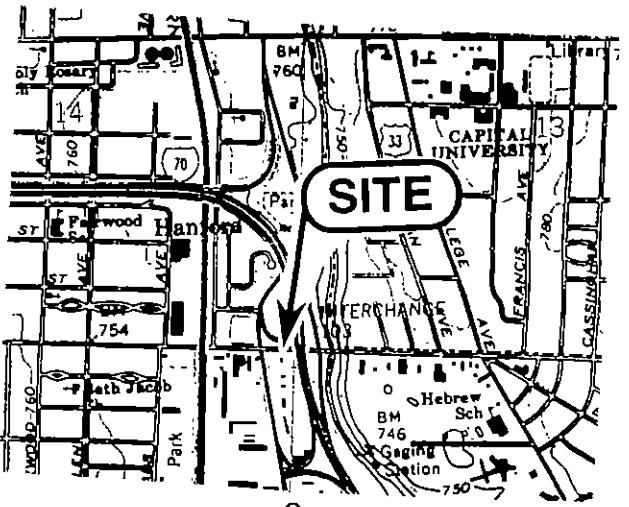
Static Level (depth to water) _____ ft. Date: _____

Quality (clear, cloudy, taste, odor) _____

*(Attach a copy of the pumping test record, per section 1521.05, ORC)

PUMP

Type of pump _____ Capacity _____ gpm


Pump set at _____ ft.

Pump installed by _____

SKETCH SHOWING WELL LOCATION

Show distances well lies from numbered state highways,
street intersections, county roads, etc.

N

758421B

BORING/WELL LOG

BORING /WELL

NO. MW-3

Page 1 of 1

LOCATION: BP COLUMBUS, OH #07723
 PROJECT NO.: 8028-9
 DRILLING STARTED: 3/16/92 (2:30 Pm)
 DRILLING METHOD/RIG TYPE: 6.25-INCH
 HSA'S
 LOGGED BY:
 GROUND ELEVATION 799.69 FT.
 PROTECTIVE CASING ELEV. 799.33 FT.
 WELL CASING (MEASURING POINT) ELEVATION
 799.33 FT. DEPTH TO WATER: 18.93 FT.

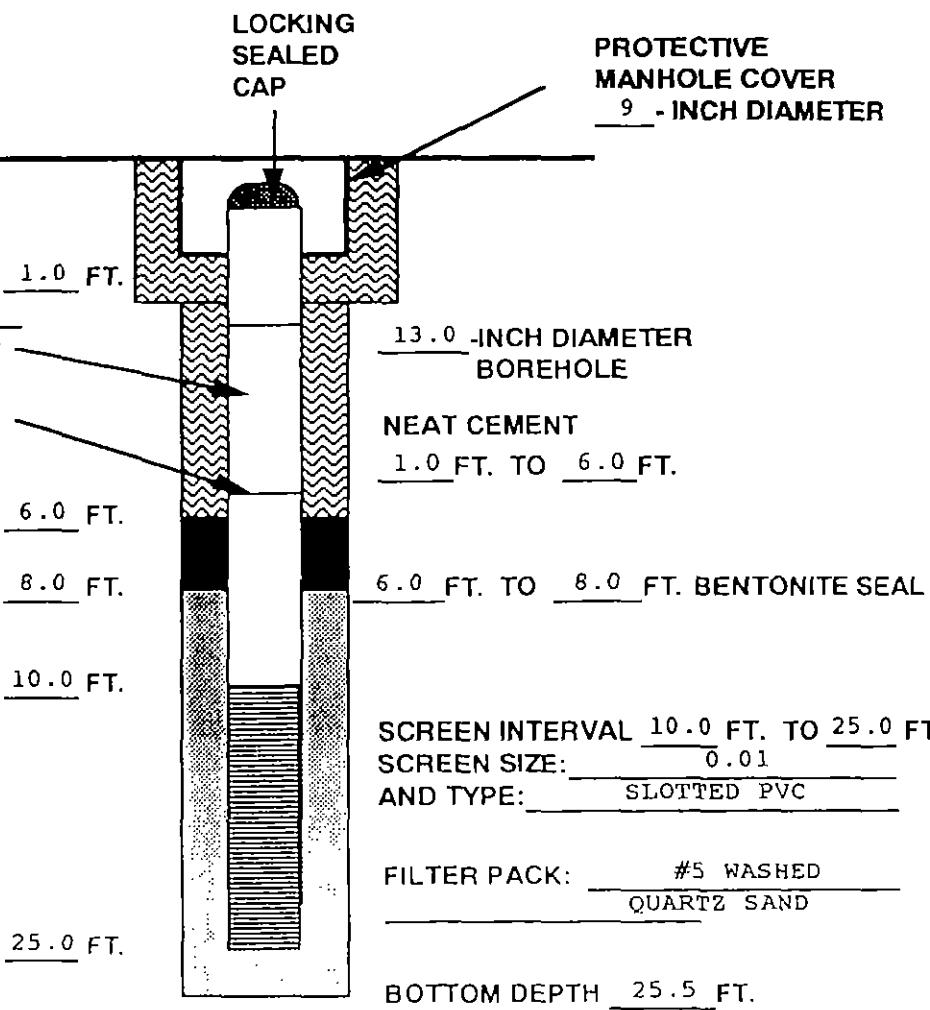
DRILLING CONTRACTOR: BURLINGTON
 DRILLER: BARRY SOMERS
 DRILLING ENDED: 3/16/92 (16:15 Pm)
 BOREHOLE DIAMETER: 13-INCH NOMINAL
 COMMENTS:

WATER QUALITY DATA:

DEPTH (FT.)	SAMPLE NO.	BLOW COUNTS	LITHOLOGIC DESCRIPTION	WELL CONSTRUCTION	REMARKS & COMMENTS
0			0-3.0 FT. HAND AUGER, NO SAMPLE. 0-1.0 FT. PAVEMENT. 1.0-3.0 FT. BROWN SILTY CLAY, DAMP, NO ODOR		HNU ISOBUTYLENE HEADSPACE PPM
5		1/2 / -2/1	5.0-7.0 FT. BROWN SILTY CLAY WITH SAND AND GRAVEL, MOIST, NO ODOR		0 PPM
10		10/			
13		13/			
18		18/	10.0-12.0 FT. DARK GRAY SILTY CLAY WITH MEDIUM-LARGE GRAVEL, DRY, SLIGHT ODOR		0 PPM
29		29			
15		10/			
35		35/	15.0-17.0 FT. GRAY COURSE SAND AND GRAVEL WITH SILTY CLAY, DRY, NO ODOR		1 PPM
50		50			
20		5/			
22		22/	20.0-22.0 FT. DARK GRAY SILTY CLAY WITH SAND AND GRAVEL, WET, NO ODOR		1 PPM
30		30/			
50		50			
25		16/			
20		20/	25.0-27.0 FT. DARK GRAY SILTY CLAY WITH FINE SAND TO COARSE GRAVEL, WET, NO ODOR		1 PPM
15		15/			
18		18			
			BOH AT 25.5 FT.		

WELL CONSTRUCTION LOG

WELL NO.: MW-3
 CLIENT: BP OIL
 PROJECT: #07723
 PROJECT NO.: 8028-9
GROUND SURFACE
 ELEVATION: 799.69 FT.
MEASURING POINT
 ELEVATION: 799.33 FT.
 INSTALLED BY: _____


DATE INSTALLED: 3/16/92
 LOCATION: WEST OF PUMP ISLANDS
BOREHOLE INSTALLATION
 METHOD: 6.25-INCH ID HSA'S
 DRILLER: BURLINGTON
STATIC DEPTH TO
 WATER: 18.93 FT.
 DATE DEVELOPED: 3/17/92
 WELL STATUS: COMPLETE

GROUND SURFACE
 AND
 ELEVATION: 799.69 FT.

MEASURING POINT
 ELEVATION: 799.33 FT.

CASING TYPE: PVC
 AND DIAMETER: 4.0 IN. ID

RISER PIPE SIZE AND JOINT
 TYPE: 4.0 INCH ID
 FLUSH THREADED

(NOT TO SCALE)
 4/91 FLUSH MOUNT

WELL LOG AND DRILLING REPORT

TYPE OR USE PEN
SELF TRANSCRIBING
PRESS HARDOhio Department of Natural Resources, Division of Water
1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739

758422

Permit Number

COUNTY FranklinTOWNSHIP ColumbusSECTION/LOT No. _____
(CIRCLE ONE)OWNER/BUILDER
(CIRCLE ONE OR BOTH)BP oil

PROPERTY ADDRESS

1921 E. Livingston
(ADDRESS OF WELL LOCATION A)

LOCATION OF PROPERTY

E of Pump Islands

CONSTRUCTION DETAILS

CASING	Borehole Diameter	in.	GROUT				
1 Diameter	in.	Length	ft.	Wall Thickness	in.	Material	Volume used
2 Diameter	in.	Length	ft.	Wall Thickness	in.	Method of installation	
Type:	1 Steel	1 Galv.	1 PVC	1	2 Other		Depth: placed from _____ ft. to _____ ft.
Joints:	2 Threaded	1 Welded	2 Solvent	1	2 Other		GRAVEL PACK (Filter Pack)
Liner:	Length	Type		Wall Thickness	in.	Material	Volume used
SCREEN						Method of installation	
Type (wire wrapped, louvered, etc.)		Material				Depth: placed from _____ ft. to _____ ft.	
Length	ft.	Diameter	in.			Pitless Device	<input type="checkbox"/> Adapter <input type="checkbox"/> Preassembled unit
Set between	ft. and	ft.	Slot			Use of Well	

WELL LOG*

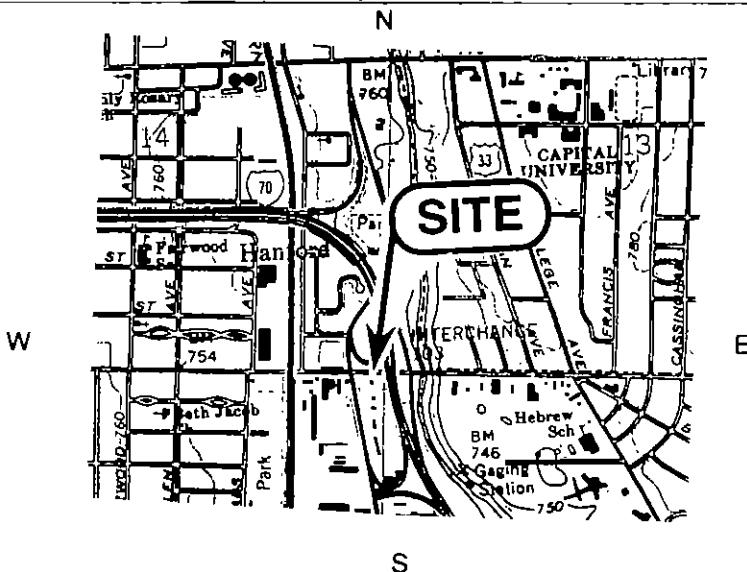
INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.

Show color, texture, hardness, and formation:
sandstone, shale, limestone, gravel, clay, sand, etc.

From _____ To _____

Well stacked

WELL TEST


<input type="checkbox"/> Bailing	<input type="checkbox"/> Pumping*	<input type="checkbox"/> Other
Test rate _____ gpm	Duration of test _____ hrs.	
Drawdown _____	ft.	
Measured from: <input type="checkbox"/> top of casing	<input type="checkbox"/> ground level	<input type="checkbox"/> Other
Static Level (depth to water) _____ ft.	Date: _____	
Quality (clear, cloudy, taste, odor) _____		

*(Attach a copy of the pumping test record, per section 1521.05, ORC)

PUMP

Type of pump _____	Capacity _____ gpm
Pump set at _____	ft.
Pump installed by _____	

SKETCH SHOWING WELL LOCATION

Show distances well lies from numbered state highways,
street intersections, county roads, etc.

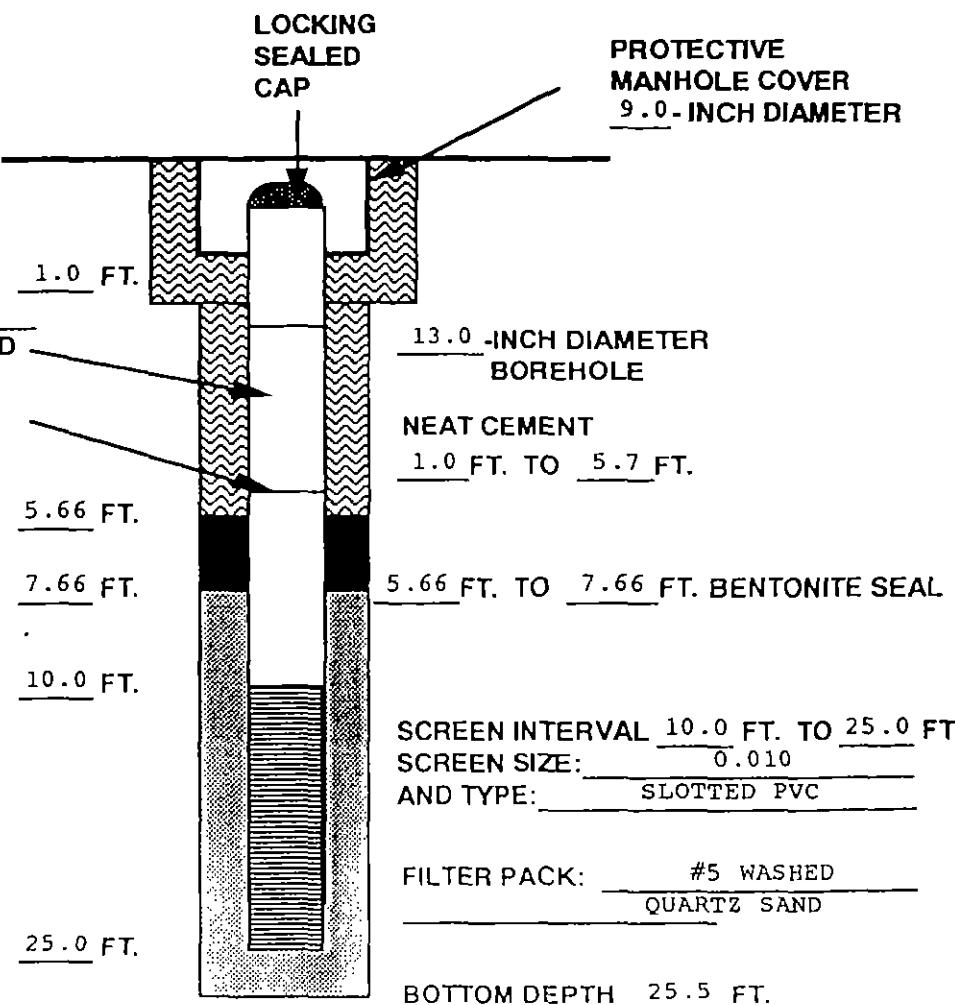
758422-B

BORING/WELL LOG		BORING /WELL NO. MW-4
Page 1 of 1		
LOCATION: BP COLUMBUS, OH #07723 PROJECT NO.: 8028-9 DRILLING STARTED: 3/16/92 (17:30 Pm) DRILLING METHOD/RIG TYPE: 6.25-INCH BSA'S _____ LOGGED BY: _____ GROUND ELEVATION 800.17 FT. PROTECTIVE CASING ELEV. 799.67 FT. WELL CASING (MEASURING POINT) ELEVATION 799.67 FT. DEPTH TO WATER: 19.31 FT.		DRILLING CONTRACTOR: BURLINGTON DRILLER: BARRY SOMNERS DRILLING ENDED: 3/16/92 (18:30 Pm) BOREHOLE DIAMETER: 13-INCH NOMINAL COMMENTS: _____ WATER QUALITY DATA: _____ _____ _____

DEPTH (FT.)	SAMPLE NO.	BLOW COUNTS	LITHOLOGIC DESCRIPTION	WELL CONSTRUCTION	REMARKS & COMMENTS
0			0-3.0 FT. HAND AUGER, NO SAMPLE. 0-1.0 FT. PAVEMENT AND GRAVEL. 1.0-3.0 FT. BROWN SILTY CLAY WITH GRAVEL, DAMP, NO ODOR		HNU ISOBUTYLENE HEADSPACE PPM
5	5/7/		5.0-7.0 FT. DARK BROWN SILTY CLAY WITH		130 PPM
	10/		SAND AND GRAVEL, DRY, SLIGHT HYDROCARBON ODOR		
	11				
10	9/				
	12/		10.0-12.0 FT. DARK GRAY SILTY CLAY		18 PPM
	15/		WITH SAND AND GRAVEL, MOIST, NO ODOR		
	17				
15	17/				
	33/		15.0-17.0 FT. DARK GRAY SILTY CLAY		4 PPM
	50		WITH SAND AND GRAVEL, DRY, NO ODOR		
20	17/				
	35/		20.0-22.0 FT. DARK GRAY SAND AND		2 PPM
	50		GRAVEL WITH SILTY CLAY, WET, NO ODOR		
25			25.0-27.0 FT. NO SAMPLE		
			BOH AT 25.0 FT.		

WELL CONSTRUCTION LOG

WELL NO.: MW-4
 CLIENT: BP OIL
 PROJECT: #07723
 PROJECT NO.: 8028-9
GROUND SURFACE
 ELEVATION: 800.17 FT.
MEASURING POINT
 ELEVATION: 799.67 FT.
 INSTALLED BY:


DATE INSTALLED: 3/16/92
 LOCATION: EAST OF PUMP ISLANDS
BOREHOLE INSTALLATION
 METHOD: 6.25-INCH ID HSA'S
 DRILLER: BURLINGTON
STATIC DEPTH TO
 WATER: 19.31 FT.
 DATE DEVELOPED: 3/16/92
 WELL STATUS: COMPLETE

GROUND SURFACE
 AND
 ELEVATION: 800.17 FT.

MEASURING POINT
 ELEVATION: 799.67 FT.

CASING TYPE: PVC
 AND DIAMETER: 4.0 IN. ID

RISER PIPE SIZE AND JOINT
 TYPE: 4.0 INCH ID
 FLUSH THREADED

(NOT TO SCALE)
 4/91 FLUSH MOUNT

WELL LOG AND DRILLING REPORT

Ohio Department of Natural Resources
Division of Water, 1939 Fountain Square Drive
Columbus, Ohio 43224-9971 Voice (614) 265-6739 Fax (614) 447-9503

03-322 967373

WELL LOCATION

CONSTRUCTION DETAILS

County Franklin Township Mifflin Rotary Cable Augered Driven Other _____Owner/Builder TINKER First AUE Last
Address of Well Location 1025 Cleveland Number 1 Street Name

BOREHOLE/CASING (measured from ground surface)

City Columbus Zip Code +4 _____
Permit No. _____1 Borehole Diameter 8 inches Depth 18' ft.Location of Well in State Plane coordinates, if available: Use of Well _____
N X _____ +/- _____ ft. or m
S Y _____ +/- _____ ft. or m2 Borehole Diameter _____ inches Depth _____ ft.

Elevation of Well _____ ft. or m

Casing Diameter _____ in. Length _____ ft. Thickness _____ in.

Datum Plain: NAD27 NAD83 Elevation Source _____

Casing Height Above Ground _____ ft.

Source of Coordinates: GRS Survey OtherType 1 Steel 1 Galv. 1 PVC 1 OtherSketch a map showing distance well lies from numbered state highways, street intersections, county roads, buildings or other notable landmarks. If latitude and longitude are available please include here: Lat: _____ Long: _____
North2 2 2 2 2 OtherJoints 1 Threaded 1 Welded 1 Solvent 1 Other2 2 2 2 Other

SCREEN

Diameter 2 Slot Size 10 Screen Length 5 ft.Type Johnson Material PVCSet Between 18 ft. and 13 ft.

GRAVEL PACK (Filter Pack)

Material #5 sand Volume/Weight Used 200 lbsMethod of Installation Threw augerDepth: Placed FROM 18 ft. TO 12 ft.

GROUT

Material Bentonite clay Volume/Weight Used 25 lbsMethod of Installation Threw augerDepth: Placed FROM 12 ft. TO 10 ft.

DRILLING LOG*

INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.

Show color, texture, hardness, and formation:
sandstone, shale, limestone, gravel, clay, sand, etc.

From

To

<u>Brown Pee Gravel</u>	<u>0</u>	<u>100</u>
<u>concrete</u>	<u>11</u>	<u>12</u>
<u>Brown clay with</u>	<u>12</u>	<u>18</u>
<u>sand and gravel moist</u>		

WELL TEST*

Pre-Pumping Static Level _____ ft. Date _____

Measured from: Top of Casing Ground Level Other Air Bailing Pumping* Other

Test Rate _____ gpm Duration of Test _____ hrs.

Feet of Drawdown _____ ft. Sustainable Yield _____ gpm

*(Attach a copy of the pumping test record, per section 1521.05, ORC)

Is Copy Attached? Yes No Flowing Well? Yes No

Quality _____

PUMP/PITLESS

Type of pump _____ Capacity _____ gpm

Pump set at _____ ft. Pitless type _____

Pump installed by _____

I hereby certify the information given is accurate and correct to the best of my knowledge.

Drilling Firm Belasco Drilling Services Inc.Address 1519 Alum Creek DrCity, State, Zip Columbus, Ohio 43209Signed Ronald E. Tinker Date 4/24/03ODH Registration Number N/A

*If more space is needed to complete drilling log, use next consecutively numbered form.)

Date of Well Completion 4/25/03 Total Depth of Well 18 ft.Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
ORIGINAL COPY TO - ODNR, DIVISION OF WATER, 1939 FOUNTAIN SQ. DRIVE, COLS., OHIO 43224-9971
Blue - Customer's copy Pink - Driller's copy Green - Local Health Dept. copy

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources
Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2002934

Page 1 of 1 for this record.

WELL LOCATION		CONSTRUCTION DETAILS																																																								
County <u>FRANKLIN</u> Township <u>FRANKLIN</u>		Drilling Method: <u>AUGER</u>																																																								
Owner/Builder <u>SHELL OIL</u> 1937 LIVINGSTON AVE		BOREHOLE/CASING (Measured from ground surface)																																																								
Address of Well Location		1 { Borehole Diameter <u>6</u> inches Depth <u>22</u> ft. Casing Diameter <u>2</u> in. Length <u>17</u> ft. Thickness <u>0.14</u> in. 2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in. Casing Height Above Ground _____ 0 ft.																																																								
City <u>COLUMBUS</u> Zip Code +4 _____ Permit No. _____ Section; _____ and/or Lot No. _____		Type { 1: <u>PVC</u> 2: _____ Joints { 1: <u>Threaded</u> 2: _____																																																								
Use of Well <u>MONITOR</u>		SCREEN																																																								
Coordinates of Well (Use only one of the below coordinate systems)		Diameter <u>2</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft. Type <u>MACHINE SLOTTED</u> Material <u>PVC</u> Set Between <u>22</u> ft. and <u>12</u> ft.																																																								
State Plane Coordinates <u>N</u> <input type="checkbox"/> <u>X</u> _____ +/- _____ ft. <u>S</u> <input type="checkbox"/> <u>Y</u> _____ +/- _____ ft.		GRAVEL PACK (Filter Pack) Material/ Size <u>SAND</u> Vol/Wt. Used <u>7 BAGS</u> Method of Installation <u>Poured (gravity)</u>																																																								
Latitude, Longitude Coordinates Latitude: <u>39.948333</u> Longitude: <u>82.945556</u>		Depth: Placed From: <u>22</u> ft. To: <u>10</u> ft.																																																								
Elevation of Well in feet: _____ +/- _____ ft.		GROUT																																																								
Datum Plane: <input type="checkbox"/> NAD27 <input type="checkbox"/> NAD83 Elevation Source _____		Material <u>Bentonite pellets/chunks</u> Vol/Wt. Used <u>3 BAGS</u> Method of Installation <u>Poured (gravity)</u> Depth: Placed From: <u>10</u> ft. To: <u>1</u> ft.																																																								
Source of Coordinates: <u>MAP-OTHERS</u>		DRILLING LOG*																																																								
Well location written description:		Comments on water quality/quantity and well construction:																																																								
WELL TEST *		FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.																																																								
Pre-Pumping Static Level <u>0</u> ft. Date _____		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Color</th> <th style="text-align: left;">Texture</th> <th style="text-align: left;">Formation</th> <th style="text-align: left;">From</th> <th style="text-align: left;">To</th> </tr> </thead> <tbody> <tr> <td style="text-align: left;">LT. BROWN</td> <td></td> <td style="text-align: left;">SAND AND GRAVEL</td> <td style="text-align: left;">0</td> <td style="text-align: left;">4</td> </tr> <tr> <td style="text-align: left;">OLIVE</td> <td style="text-align: left;">SILTY</td> <td style="text-align: left;">CLAY</td> <td style="text-align: left;">4</td> <td style="text-align: left;">22</td> </tr> <tr> <td colspan="5" style="height: 40px;"></td> </tr> </tbody> </table>		Color	Texture	Formation	From	To	LT. BROWN		SAND AND GRAVEL	0	4	OLIVE	SILTY	CLAY	4	22																																								
Color	Texture	Formation	From	To																																																						
LT. BROWN		SAND AND GRAVEL	0	4																																																						
OLIVE	SILTY	CLAY	4	22																																																						
Measured from _____																																																										
Pumping test method _____																																																										
Test Rate _____ gpm Duration of Test _____ hrs.																																																										
Feet of Drawdown _____ ft. Sustainable Yield _____ gpm																																																										
*(Attach a copy of the pumping test record, per section 1521.05, ORC)																																																										
Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No																																																										
PUMP/PITLESS																																																										
Type of pump _____ Capacity _____ gpm																																																										
Pump set at _____ ft. Pitless Type _____																																																										
Pump installed by _____																																																										
I hereby certify the information given is accurate and correct to the best of my knowledge.																																																										
Drilling Firm <u>BELASCO DRILLING, INC.</u>																																																										
Address <u>1519 ALUM CREEK DR</u>																																																										
City, State, Zip <u>COLUMBUS OH 43209</u>																																																										
Signed <u>ALAN BELASCO</u> Date <u>5/18/2006</u> (Filed Electronically)		Aquifer Type (Formation producing the most water.) <u>CLAY</u>																																																								
ODH Registration Number _____		Date of Well Completion <u>5/10/2006</u> Total Depth of Well <u>22</u> ft.																																																								

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources
Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2002936

Page 1 of 1 for this record.

WELL LOCATION		CONSTRUCTION DETAILS																										
County <u>FRANKLIN</u> Township <u>FRANKLIN</u>		Drilling Method: <u>AUGER</u>																										
Owner/Builder <u>SHELL OIL</u> 1937 LIVINGSTON AVE		BOREHOLE/CASING (Measured from ground surface)																										
Address of Well Location		1 { Borehole Diameter <u>6</u> inches Depth <u>22</u> ft. Casing Diameter <u>2</u> in. Length <u>17</u> ft. Thickness <u>0.14</u> in. 2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in. Casing Height Above Ground _____ 0 ft.																										
City <u>COLUMBUS</u> Zip Code +4 _____ Permit No. _____ Section; _____ and/or Lot No. _____		Type { 1: <u>PVC</u> 2: _____ Joints { 1: <u>Threaded</u> 2: _____																										
Use of Well <u>MONITOR</u>		SCREEN																										
Coordinates of Well (Use only one of the below coordinate systems)		Diameter <u>2</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft. Type <u>MACHINE SLOTTED</u> Material <u>PVC</u> Set Between <u>22</u> ft. and <u>12</u> ft.																										
State Plane Coordinates <u>N</u> <input type="checkbox"/> <u>X</u> _____ +/- _____ ft. <u>S</u> <input type="checkbox"/> <u>Y</u> _____ +/- _____ ft.		GRAVEL PACK (Filter Pack) Material/ Size <u>SAND</u> Vol/Wt. Used <u>7 BAGS</u> Method of Installation <u>Poured (gravity)</u>																										
Latitude, Longitude Coordinates Latitude: <u>39.948333</u> Longitude: <u>82.945556</u>		Depth: Placed From: <u>22</u> ft. To: <u>10</u> ft.																										
Elevation of Well in feet: _____ +/- _____ ft.		GROUT																										
Datum Plane: <input type="checkbox"/> NAD27 <input type="checkbox"/> NAD83 Elevation Source _____		Material <u>Bentonite pellets/chunks</u> Vol/Wt. Used <u>3 BAGS</u> Method of Installation <u>Poured (gravity)</u> Depth: Placed From: <u>10</u> ft. To: <u>1</u> ft.																										
Source of Coordinates: <u>MAP-OTHERS</u>		DRILLING LOG*																										
Well location written description:		Comments on water quality/quantity and well construction:																										
WELL TEST *		FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.																										
Pre-Pumping Static Level <u>0</u> ft. Date _____		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">Color</th> <th style="text-align: left; padding: 2px;">Texture</th> <th style="text-align: left; padding: 2px;">Formation</th> <th style="text-align: left; padding: 2px;">From</th> <th style="text-align: left; padding: 2px;">To</th> </tr> </thead> <tbody> <tr> <td style="text-align: left; padding: 2px;">LT. BROWN</td> <td style="text-align: left; padding: 2px;"></td> <td style="text-align: left; padding: 2px;">FILL MATERIAL</td> <td style="text-align: left; padding: 2px;">0</td> <td style="text-align: left; padding: 2px;">4</td> </tr> <tr> <td style="text-align: left; padding: 2px;">OLIVE</td> <td style="text-align: left; padding: 2px;">SILTY</td> <td style="text-align: left; padding: 2px;">CLAY</td> <td style="text-align: left; padding: 2px;">4</td> <td style="text-align: left; padding: 2px;">22</td> </tr> <tr> <td colspan="5" style="text-align: center; padding: 2px;">(Formations listed in order of increasing depth)</td> </tr> <tr> <td colspan="5" style="text-align: center; padding: 2px;">(Water is encountered at _____)</td> </tr> </tbody> </table>		Color	Texture	Formation	From	To	LT. BROWN		FILL MATERIAL	0	4	OLIVE	SILTY	CLAY	4	22	(Formations listed in order of increasing depth)					(Water is encountered at _____)				
Color	Texture	Formation	From	To																								
LT. BROWN		FILL MATERIAL	0	4																								
OLIVE	SILTY	CLAY	4	22																								
(Formations listed in order of increasing depth)																												
(Water is encountered at _____)																												
Measured from _____																												
Pumping test method _____																												
Test Rate _____ gpm Duration of Test _____ hrs.																												
Feet of Drawdown _____ ft. Sustainable Yield _____ gpm																												
*(Attach a copy of the pumping test record, per section 1521.05, ORC)																												
Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No																												
PUMP/PITLESS																												
Type of pump _____ Capacity _____ gpm																												
Pump set at _____ ft. Pitless Type _____																												
Pump installed by _____																												
I hereby certify the information given is accurate and correct to the best of my knowledge.																												
Drilling Firm <u>BELASCO DRILLING, INC.</u>																												
Address <u>1519 ALUM CREEK DR</u>																												
City, State, Zip <u>COLUMBUS OH 43209</u>																												
Signed <u>ALAN BELASCO</u> Date <u>5/18/2006</u> (Filed Electronically)		Aquifer Type (Formation producing the most water.) <u>CLAY</u>																										
ODH Registration Number _____		Date of Well Completion <u>5/10/2006</u> Total Depth of Well <u>22</u> ft.																										

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources
Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2002937

Page 1 of 1 for this record.

WELL LOCATION		CONSTRUCTION DETAILS																					
County <u>FRANKLIN</u> Township <u>FRANKLIN</u>		Drilling Method: <u>AUGER</u>																					
Owner/Builder <u>SHELL</u> 1937 LIVINGSTON AVE		BOREHOLE/CASING (Measured from ground surface)																					
Address of Well Location		1 { Borehole Diameter <u>6</u> inches Depth <u>22</u> ft. Casing Diameter <u>2</u> in. Length <u>17</u> ft. Thickness <u>0.14</u> in.																					
City <u>COLUMBUS</u> Zip Code +4 _____		2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in.																					
Permit No. _____ Section; _____ and/or Lot No. _____		Casing Height Above Ground <u>0</u> ft.																					
Use of Well <u>MONITOR</u>		Type { 1: <u>PVC</u> 2: _____																					
Coordinates of Well (Use only one of the below coordinate systems)		Joints { 1: <u>Threaded</u> 2: _____																					
State Plane Coordinates <u>N</u> <input type="checkbox"/> <u>X</u> _____ +/- _____ ft. <u>S</u> <input type="checkbox"/> <u>Y</u> _____ +/- _____ ft.		SCREEN Diameter <u>2</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft.																					
Latitude, Longitude Coordinates Latitude: <u>39.948333</u> Longitude: <u>82.945556</u>		Type <u>MACHINE SLOTTED</u> Material <u>PVC</u>																					
Elevation of Well in feet: _____ +/- _____ ft.		Set Between <u>22</u> ft. and <u>12</u> ft.																					
Datum Plane: <input type="checkbox"/> NAD27 <input type="checkbox"/> NAD83 Elevation Source _____		GRAVEL PACK (Filter Pack) Material/ Size <u>SAND</u> Vol/Wt. Used <u>7 BAGS</u>																					
Source of Coordinates: <u>MAP-OTHERS</u>		Method of Installation <u>Poured (gravity)</u>																					
Well location written description:		Depth: Placed From: <u>22</u> ft. To: <u>10</u> ft.																					
GROUT		Material <u>Bentonite pellets/chunks</u> Vol/Wt. Used <u>3 BAGS</u>																					
		Method of Installation <u>Poured (gravity)</u>																					
		Depth: Placed From: <u>10</u> ft. To: <u>1</u> ft.																					
DRILLING LOG*																							
Comments on water quality/quantity and well construction:		FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.																					
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center; padding: 2px;">Color</th> <th style="text-align: center; padding: 2px;">Texture</th> <th style="text-align: center; padding: 2px;">Formation</th> <th style="text-align: center; padding: 2px;">From</th> <th style="text-align: center; padding: 2px;">To</th> </tr> </thead> <tbody> <tr> <td style="text-align: center; padding: 2px;">LT. GRAY</td> <td style="text-align: center; padding: 2px;">GRAVELLY</td> <td style="text-align: center; padding: 2px;">FILL MATERIAL</td> <td style="text-align: center; padding: 2px;">0</td> <td style="text-align: center; padding: 2px;">4</td> </tr> <tr> <td style="text-align: center; padding: 2px;">BROWN</td> <td style="text-align: center; padding: 2px;">SILTY</td> <td style="text-align: center; padding: 2px;">CLAY</td> <td style="text-align: center; padding: 2px;">4</td> <td style="text-align: center; padding: 2px;">22</td> </tr> <tr> <td colspan="5" style="text-align: center; padding: 2px;">(Add additional rows as needed)</td> </tr> </tbody> </table>		Color	Texture	Formation	From	To	LT. GRAY	GRAVELLY	FILL MATERIAL	0	4	BROWN	SILTY	CLAY	4	22	(Add additional rows as needed)				
Color	Texture	Formation	From	To																			
LT. GRAY	GRAVELLY	FILL MATERIAL	0	4																			
BROWN	SILTY	CLAY	4	22																			
(Add additional rows as needed)																							
WELL TEST *																							
Pre-Pumping Static Level <u>0</u> ft. Date _____																							
Measured from _____																							
Pumping test method _____																							
Test Rate _____ gpm Duration of Test _____ hrs.																							
Feet of Drawdown _____ ft. Sustainable Yield _____ gpm																							
*(Attach a copy of the pumping test record, per section 1521.05, ORC)																							
Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No																							
PUMP/PITLESS																							
Type of pump _____ Capacity _____ gpm																							
Pump set at _____ ft. Pitless Type _____																							
Pump installed by _____																							
I hereby certify the information given is accurate and correct to the best of my knowledge.																							
Drilling Firm <u>BELASCO DRILLING, INC.</u>																							
Address <u>1519 ALUM CREEK DR</u>																							
City, State, Zip <u>COLUMBUS OH 43209</u>																							
Signed <u>ALAN BELASCO</u> Date <u>5/18/2006</u> (Filed Electronically)		Aquifer Type (Formation producing the most water.) <u>CLAY</u>																					
ODH Registration Number _____		Date of Well Completion <u>5/10/2006</u> Total Depth of Well <u>22</u> ft.																					

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources
Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2004992

Page 1 of 1 for this record.

<p>WELL LOCATION</p> <p>County <u>FRANKLIN</u> Township <u>COLUMBUS</u> Owner/Builder <u>SHELL STATION</u> Address of Well Location <u>1937 E LIVINGSTON AVE</u> City <u>COLUMBUS</u> Zip Code +4 <u>43209</u> Permit No. _____ Section; _____ and/or Lot No. _____ Use of Well <u>MONITOR</u></p> <p>Coordinates of Well (Use only one of the below coordinate systems)</p> <p>State Plane Coordinates <input type="checkbox"/> N <u>X</u> _____ +/- _____ ft. <input type="checkbox"/> S <u>Y</u> _____ +/- _____ ft.</p> <p>Latitude, Longitude Coordinates <u>Latitude: 39.94793</u> Longitude: <u>82.94534</u></p> <p>Elevation of Well in feet: _____ +/- _____ ft.</p> <p>Datum Plane: <input type="checkbox"/> NAD27 <input checked="" type="checkbox"/> NAD83 Elevation Source _____</p> <p>Source of Coordinates: <u>GPS</u></p> <p>Well location written description:</p>		<p>CONSTRUCTION DETAILS</p> <p>Drilling Method: <u>AUGER</u></p> <p>BOREHOLE/CASING (Measured from ground surface)</p> <p>1 { Borehole Diameter <u>8.25</u> inches Depth <u>23</u> ft. Casing Diameter <u>2</u> in. Length <u>13</u> ft. Thickness <u>0.154</u> in. 2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in. Casing Height Above Ground _____ ft.</p> <p>Type { 1: PVC 2: _____</p> <p>Joints { 1: Threaded 2: _____</p> <p>SCREEN</p> <p>Diameter <u>2</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft. Type <u>MACHINE SLOTTED</u> Material <u>PVC</u> Set Between <u>23</u> ft. and <u>11</u> ft.</p> <p>GRAVEL PACK (Filter Pack)</p> <p>Material/ Size <u>SILICA SAND</u> Vol/Wt. Used <u>400 LBS.</u></p> <p>Method of Installation <u>Poured (gravity)</u></p> <p>Depth: Placed From: <u>23</u> ft. To: <u>11</u> ft.</p> <p>GROUT</p> <p>Material <u>Bentonite pellets/chunks</u> Vol/Wt. Used <u>250 LBS.</u></p> <p>Method of Installation <u>Poured (gravity)</u></p> <p>Depth: Placed From: <u>11</u> ft. To: <u>2</u> ft.</p> <p>DRILLING LOG*</p> <p>Comments on water quality/quantity and well construction:</p> <p>FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">Color</th> <th style="width: 10%;">Texture</th> <th style="width: 40%;">Formation</th> <th style="width: 10%;">From</th> <th style="width: 10%;">To</th> </tr> </thead> <tbody> <tr> <td></td> <td></td> <td style="text-align: center;">FILL MATERIAL</td> <td style="text-align: center;">0</td> <td style="text-align: center;">1</td> </tr> <tr> <td>BROWN</td> <td>SILTY</td> <td style="text-align: center;">CLAY</td> <td style="text-align: center;">1</td> <td style="text-align: center;">5</td> </tr> <tr> <td>BROWN</td> <td>DAMP</td> <td style="text-align: center;">CLAY</td> <td style="text-align: center;">5</td> <td style="text-align: center;">10</td> </tr> <tr> <td>GRAY</td> <td>DAMP</td> <td style="text-align: center;">CLAYSANDGRAVEL</td> <td style="text-align: center;">10</td> <td style="text-align: center;">15</td> </tr> <tr> <td>GRAY</td> <td>FINE</td> <td style="text-align: center;">SAND</td> <td style="text-align: center;">15</td> <td style="text-align: center;">20</td> </tr> <tr> <td>GRAY</td> <td></td> <td style="text-align: center;">SILT</td> <td style="text-align: center;">20</td> <td style="text-align: center;">23</td> </tr> </tbody> </table>	Color	Texture	Formation	From	To			FILL MATERIAL	0	1	BROWN	SILTY	CLAY	1	5	BROWN	DAMP	CLAY	5	10	GRAY	DAMP	CLAYSANDGRAVEL	10	15	GRAY	FINE	SAND	15	20	GRAY		SILT	20	23
Color	Texture	Formation	From	To																																	
		FILL MATERIAL	0	1																																	
BROWN	SILTY	CLAY	1	5																																	
BROWN	DAMP	CLAY	5	10																																	
GRAY	DAMP	CLAYSANDGRAVEL	10	15																																	
GRAY	FINE	SAND	15	20																																	
GRAY		SILT	20	23																																	
<p>WELL TEST *</p> <p>Pre-Pumping Static Level <u>0</u> ft. Date _____</p> <p>Measured from _____</p> <p>Pumping test method _____</p> <p>Test Rate _____ gpm Duration of Test _____ hrs.</p> <p>Feet of Drawdown _____ ft. Sustainable Yield _____ gpm</p> <p>*(Attach a copy of the pumping test record, per section 1521.05, ORC)</p> <p>Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No</p>		<p>PUMP/PITLESS</p> <p>Type of pump _____ Capacity _____ gpm</p> <p>Pump set at _____ ft. Pitless Type _____</p> <p>Pump installed by _____</p> <p>I hereby certify the information given is accurate and correct to the best of my knowledge.</p> <p>Drilling Firm <u>H.A.D. INC.</u> Address <u>9797 BENNER RD</u> City, State, Zip <u>RITTMAN OH 44270</u> Signed <u>SUSAN BROMLEY</u> Date <u>9/11/2006</u> (Filed Electronically)</p>																																			
<p>ODH Registration Number _____</p>		<p>Aquifer Type (Formation producing the most water.) <u>SAND</u> Date of Well Completion <u>9/7/2006</u> Total Depth of Well <u>23</u> ft.</p>																																			

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources
Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2005003

Page 1 of 1 for this record.

<p>WELL LOCATION</p> <p>County <u>FRANKLIN</u> Township <u>COLUMBUS</u> Owner/Builder <u>SHELL STATION</u> Address of Well Location <u>1937 E LIVINGSTON AVE</u> City <u>COLUMBUS</u> Zip Code +4 <u>43209</u> Permit No. _____ Section; _____ and/or Lot No. _____ Use of Well <u>MONITOR</u></p> <p>Coordinates of Well (Use only one of the below coordinate systems)</p> <p>State Plane Coordinates <input type="checkbox"/> N <u>X</u> _____ +/- _____ ft. <input type="checkbox"/> S <u>Y</u> _____ +/- _____ ft.</p> <p>Latitude, Longitude Coordinates <u>Latitude: 39.94816</u> Longitude: <u>82.9454</u> Elevation of Well in feet: _____ +/- _____ ft. Datum Plane: <input type="checkbox"/> NAD27 <input checked="" type="checkbox"/> NAD83 Elevation Source _____ Source of Coordinates: <u>GPS</u></p> <p>Well location written description:</p>		<p>CONSTRUCTION DETAILS</p> <p>Drilling Method: <u>AUGER</u></p> <p>BOREHOLE/CASING (Measured from ground surface)</p> <p>1 { Borehole Diameter <u>8.25</u> inches Depth <u>23</u> ft. Casing Diameter <u>2</u> in. Length <u>13</u> ft. Thickness <u>0.154</u> in. 2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in. Casing Height Above Ground _____ ft.</p> <p>Type { 1: PVC 2: _____</p> <p>Joints { 1: Threaded 2: _____</p> <p>SCREEN</p> <p>Diameter <u>2</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft. Type <u>MACHINE SLOTTED</u> Material <u>PVC</u> Set Between <u>23</u> ft. and <u>11</u> ft.</p> <p>GRAVEL PACK (Filter Pack)</p> <p>Material/ Size <u>SILICA SAND</u> Vol/Wt. Used <u>400 LBS.</u> Method of Installation <u>Poured (gravity)</u></p> <p>Depth: Placed From: <u>23</u> ft. To: <u>11</u> ft.</p> <p>GROUT</p> <p>Material <u>Bentonite pellets/chunks</u> Vol/Wt. Used <u>250 LBS.</u> Method of Installation <u>Poured (gravity)</u> Depth: Placed From: <u>11</u> ft. To: <u>2</u> ft.</p> <p>DRILLING LOG*</p> <p>Comments on water quality/quantity and well construction:</p> <p>FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">Color</th> <th style="width: 10%;">Texture</th> <th style="width: 40%;">Formation</th> <th style="width: 10%;">From</th> <th style="width: 10%;">To</th> </tr> </thead> <tbody> <tr> <td></td> <td></td> <td style="text-align: center;">FILL MATERIAL</td> <td style="text-align: center;">0</td> <td style="text-align: center;">1</td> </tr> <tr> <td>BROWN</td> <td>SILTY</td> <td style="text-align: center;">COBBLES</td> <td style="text-align: center;">1</td> <td style="text-align: center;">5</td> </tr> <tr> <td>BROWN</td> <td>DAMP</td> <td style="text-align: center;">CLAY</td> <td style="text-align: center;">5</td> <td style="text-align: center;">10</td> </tr> <tr> <td>GRAY</td> <td></td> <td style="text-align: center;">CLAYSANDGRAVEL</td> <td style="text-align: center;">10</td> <td style="text-align: center;">15</td> </tr> <tr> <td>GRAY</td> <td>FINE</td> <td style="text-align: center;">SAND</td> <td style="text-align: center;">15</td> <td style="text-align: center;">20</td> </tr> <tr> <td>GRAY</td> <td></td> <td style="text-align: center;">SILT</td> <td style="text-align: center;">20</td> <td style="text-align: center;">23</td> </tr> </tbody> </table>	Color	Texture	Formation	From	To			FILL MATERIAL	0	1	BROWN	SILTY	COBBLES	1	5	BROWN	DAMP	CLAY	5	10	GRAY		CLAYSANDGRAVEL	10	15	GRAY	FINE	SAND	15	20	GRAY		SILT	20	23
Color	Texture	Formation	From	To																																	
		FILL MATERIAL	0	1																																	
BROWN	SILTY	COBBLES	1	5																																	
BROWN	DAMP	CLAY	5	10																																	
GRAY		CLAYSANDGRAVEL	10	15																																	
GRAY	FINE	SAND	15	20																																	
GRAY		SILT	20	23																																	
<p>WELL TEST *</p> <p>Pre-Pumping Static Level <u>0</u> ft. Date _____</p> <p>Measured from _____</p> <p>Pumping test method _____</p> <p>Test Rate _____ gpm Duration of Test _____ hrs.</p> <p>Feet of Drawdown _____ ft. Sustainable Yield _____ gpm</p> <p>*(Attach a copy of the pumping test record, per section 1521.05, ORC)</p> <p>Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No</p>		<p>PUMP/PITLESS</p> <p>Type of pump _____ Capacity _____ gpm</p> <p>Pump set at _____ ft. Pitless Type _____</p> <p>Pump installed by _____</p> <p>I hereby certify the information given is accurate and correct to the best of my knowledge.</p> <p>Drilling Firm <u>H.A.D. INC.</u> Address <u>9797 BENNER RD</u> City, State, Zip <u>RITTMAN OH 44270</u> Signed <u>SUSAN BROMLEY</u> Date <u>9/11/2006</u> (Filed Electronically)</p>																																			
<p>ODH Registration Number _____</p>		<p>Aquifer Type (Formation producing the most water.) <u>SAND</u> Date of Well Completion <u>9/7/2006</u> Total Depth of Well <u>23</u> ft.</p>																																			

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources
Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2031523

Page 1 of 1 for this record.

WELL LOCATION		CONSTRUCTION DETAILS																																																																							
County <u>FRANKLIN</u> Township <u>COLUMBUS</u> SRW		Drilling Method: <u>AUGER</u> BOREHOLE/CASING (Measured from ground surface)																																																																							
Owner/Builder 2080 E LIVINGSTON Address of Well Location		1 { Borehole Diameter <u>8</u> inches Depth <u>23</u> ft. Casing Diameter <u>2</u> in. Length <u>13</u> ft. Thickness <u>0.154</u> in. 2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in. Casing Height Above Ground _____ 0 ft.																																																																							
City <u>COLUMBUS</u> Zip Code +4 <u>43209</u> Permit No. _____ Section; _____ and/or Lot No. _____		Type { 1: <u>PVC</u> 2: _____ Joints { 1: <u>Threaded</u> 2: _____																																																																							
Coordinates of Well (Use only one of the below coordinate systems) State Plane Coordinates N <input type="checkbox"/> X _____ +/- _____ ft. S <input type="checkbox"/> Y _____ +/- _____ ft.		SCREEN Diameter <u>2</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft. Type <u>MACHINE SLOTTED</u> Material <u>PVC</u> Set Between <u>23</u> ft. and <u>13</u> ft.																																																																							
Latitude, Longitude Coordinates Latitude: <u>39.94849</u> Longitude: <u>-82.94171</u> Elevation of Well in feet: <u>767</u> +/- _____ ft. Datum Plane: <input type="checkbox"/> NAD27 <input checked="" type="checkbox"/> NAD83 Elevation Source <u>GPS</u> Source of Coordinates: <u>GPS</u>		GRAVEL PACK (Filter Pack) Material/ Size <u>#5</u> Vol/Wt. Used <u>250 LBS</u> Method of Installation <u>Poured (gravity)</u> Depth: Placed From: <u>23</u> ft. To: <u>11</u> ft.																																																																							
Well location written description:		GROUT Material <u>Bentonite pellets/chunks</u> Vol/Wt. Used <u>150 LBS</u> Method of Installation <u>Poured (gravity)</u> Depth: Placed From: <u>11</u> ft. To: <u>1</u> ft.																																																																							
Comments on water quality/quantity and well construction: MW-2		DRILLING LOG* FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.																																																																							
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; width: 15%;">Color</th> <th style="text-align: left; width: 15%;">Texture</th> <th style="text-align: left; width: 15%;">Formation</th> <th style="text-align: left; width: 15%;">From</th> <th style="text-align: left; width: 15%;">To</th> </tr> </thead> <tbody> <tr> <td></td> <td></td> <td>ASPHALT</td> <td>0</td> <td>1</td> </tr> <tr> <td>BROWN</td> <td>SANDY</td> <td>CLAY</td> <td>1</td> <td>8</td> </tr> <tr> <td></td> <td></td> <td>CONCRETE</td> <td>8</td> <td>8.5</td> </tr> <tr> <td>BROWN</td> <td></td> <td>CLAY</td> <td>8.5</td> <td>18</td> </tr> <tr> <td>BROWN</td> <td></td> <td>SAND AND GRAVEL</td> <td>18</td> <td>23</td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>		Color	Texture	Formation	From	To			ASPHALT	0	1	BROWN	SANDY	CLAY	1	8			CONCRETE	8	8.5	BROWN		CLAY	8.5	18	BROWN		SAND AND GRAVEL	18	23																																								
Color	Texture	Formation	From	To																																																																					
		ASPHALT	0	1																																																																					
BROWN	SANDY	CLAY	1	8																																																																					
		CONCRETE	8	8.5																																																																					
BROWN		CLAY	8.5	18																																																																					
BROWN		SAND AND GRAVEL	18	23																																																																					
WELL TEST *																																																																									
Pre-Pumping Static Level <u>0</u> ft. Date _____																																																																									
Measured from _____																																																																									
Pumping test method _____																																																																									
Test Rate _____ gpm Duration of Test _____ hrs.																																																																									
Feet of Drawdown _____ ft. Sustainable Yield _____ gpm																																																																									
*(Attach a copy of the pumping test record, per section 1521.05, ORC)																																																																									
Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No																																																																									
PUMP/PITLESS																																																																									
Type of pump _____ Capacity _____ gpm																																																																									
Pump set at _____ ft. Pitless Type _____																																																																									
Pump installed by _____																																																																									
I hereby certify the information given is accurate and correct to the best of my knowledge.																																																																									
Drilling Firm <u>FRONTZ DRILLING, INC.</u>																																																																									
Address <u>2031 MILLERSBURG RD</u>																																																																									
City, State, Zip <u>WOOSTER OH 44691</u>																																																																									
Signed <u>KRISTI FITZGERALD</u> Date <u>3/24/2011</u> (Filed Electronically)		Aquifer Type (Formation producing the most water.) <u>SAND AND GRAVEL</u>																																																																							
ODH Registration Number <u>0120</u>		Date of Well Completion <u>3/7/2011</u> Total Depth of Well <u>23</u> ft.																																																																							

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources
Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2035409

Page 1 of 1 for this record.

<p>WELL LOCATION</p> <p>County <u>FRANKLIN</u> Township <u>COLUMBUS</u> Owner/Builder <u>DISCOUNT AUTO GLASS</u> Address of Well Location <u>2182 E LIVINGSTON AVE</u> City <u>COLUMBUS</u> Zip Code +4 <u>43209</u> Permit No. _____ Section; _____ and/or Lot No. _____ Use of Well <u>MONITOR</u></p> <p>Coordinates of Well (Use only one of the below coordinate systems)</p> <p>State Plane Coordinates <input type="checkbox"/> N <u>X</u> _____ +/- _____ ft. <input type="checkbox"/> S <u>Y</u> _____ +/- _____ ft.</p> <p>Latitude, Longitude Coordinates <u>Latitude: 39.948314</u> <u>Longitude: -82.938994</u></p> <p>Elevation of Well in feet: _____ +/- _____ ft.</p> <p>Datum Plane: <input type="checkbox"/> NAD27 <input checked="" type="checkbox"/> NAD83 Elevation Source _____</p> <p>Source of Coordinates: <u>GEOCODE</u></p> <p>Well location written description: MW-7</p>		<p>CONSTRUCTION DETAILS</p> <p>Drilling Method: <u>AUGER</u></p> <p>BOREHOLE/CASING (Measured from ground surface)</p> <p>1 { Borehole Diameter <u>4.25</u> inches Depth <u>21</u> ft. Casing Diameter <u>2</u> in. Length <u>11</u> ft. Thickness <u>0.154</u> in. 2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in. Casing Height Above Ground _____ ft.</p> <p>Type { 1: PVC 2: _____</p> <p>Joints { 1: Threaded 2: _____</p> <p>SCREEN</p> <p>Diameter <u>2</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft. Type <u>MACHINE SLOTTED</u> Material <u>PVC</u> Set Between <u>11</u> ft. and <u>21</u> ft.</p> <p>GRAVEL PACK (Filter Pack)</p> <p>Material/ Size <u>#5 Sand</u> Vol/Wt. Used <u>150#</u> Method of Installation <u>Poured (gravity)</u></p> <p>Depth: Placed From: <u>9</u> ft. To: <u>21</u> ft.</p> <p>GROUT</p> <p>Material <u>Bentonite pellets/chunks</u> Vol/Wt. Used <u>250#</u> Method of Installation <u>Poured (gravity)</u> Depth: Placed From: <u>1</u> ft. To: <u>9</u> ft.</p> <p>DRILLING LOG*</p> <p>Comments on water quality/quantity and well construction:</p> <p>FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">Color</th> <th style="width: 10%;">Texture</th> <th style="width: 10%;">Formation</th> <th style="width: 10%;">From</th> <th style="width: 10%;">To</th> </tr> </thead> <tbody> <tr> <td>BROWN</td> <td>SILTY</td> <td>CLAY</td> <td>0</td> <td>9</td> </tr> <tr> <td>BROWN-GRAY</td> <td></td> <td>SAND AND SILT</td> <td>9</td> <td>11</td> </tr> <tr> <td>BROWN</td> <td>SILTY</td> <td>CLAY</td> <td>11</td> <td>15</td> </tr> <tr> <td>BROWN</td> <td>SILTY</td> <td>CLAY & GRAVEL</td> <td>15</td> <td>17</td> </tr> <tr> <td>BROWN</td> <td>COARSE</td> <td>SAND</td> <td>17</td> <td>21</td> </tr> <tr> <td colspan="4" style="text-align: right;">Water Encountered At</td> <td>17</td> </tr> <tr> <td colspan="4" style="text-align: right;">17</td> <td>17</td> </tr> </tbody> </table> <p>WELL TEST*</p> <p>Pre-Pumping Static Level <u>0</u> ft. Date <u>10/3/2011</u> Measured from <u>TOP OF CASING</u> Pumping test method <u>BAILING</u> Test Rate _____ gpm Duration of Test _____ hrs. Feet of Drawdown _____ ft. Sustainable Yield _____ gpm</p> <p>*(Attach a copy of the pumping test record, per section 1521.05, ORC)</p> <p>Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No</p> <p>PUMP/PITLESS</p> <p>Type of pump _____ Capacity _____ gpm Pump set at _____ ft. Pitless Type _____ Pump installed by _____</p> <p>I hereby certify the information given is accurate and correct to the best of my knowledge.</p> <p>Drilling Firm <u>ENVIROCORE, LIMITED</u> Address <u>8250 ESTATES PK</u> City, State, Zip <u>PLAIN CITY OH 43064</u> Signed <u>CHRIS RISMILLER</u> Date <u>11/14/2011</u> (Filed Electronically)</p> <p>Aquifer Type (Formation producing the most water.) <u>SAND</u> Date of Well Completion <u>10/3/2011</u> Total Depth of Well <u>21</u> ft.</p>	Color	Texture	Formation	From	To	BROWN	SILTY	CLAY	0	9	BROWN-GRAY		SAND AND SILT	9	11	BROWN	SILTY	CLAY	11	15	BROWN	SILTY	CLAY & GRAVEL	15	17	BROWN	COARSE	SAND	17	21	Water Encountered At				17	17				17
Color	Texture	Formation	From	To																																						
BROWN	SILTY	CLAY	0	9																																						
BROWN-GRAY		SAND AND SILT	9	11																																						
BROWN	SILTY	CLAY	11	15																																						
BROWN	SILTY	CLAY & GRAVEL	15	17																																						
BROWN	COARSE	SAND	17	21																																						
Water Encountered At				17																																						
17				17																																						

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources
Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2082942

Page 1 of 1 for this record.

WELL LOCATION		CONSTRUCTION DETAILS				
County <u>FRANKLIN</u> Township <u>COLUMBUS</u>		Drilling Method: <u>DIRECT PUSH</u>				
MIDDLE WEST SPIRITS, LLC.		BOREHOLE/CASING (Measured from ground surface)				
Owner/Builder		1 { Borehole Diameter <u>3.25</u> inches Depth <u>24.8</u> ft.				
1165 ALUM CREEK DR		Casing Diameter <u>1</u> in. Length <u>14.8</u> ft. Thickness <u>0.154</u> in.				
Address of Well Location		2 { Borehole Diameter _____ inches Depth _____ ft.				
City <u>COLUMBUS</u> Zip Code +4 <u>43209</u>		Casing Diameter _____ in. Length _____ ft. Thickness _____ in.				
Permit No. _____ Section; _____ and/or Lot No. _____		Casing Height Above Ground <u>0</u> ft.				
Use of Well <u>MONITOR</u>		Type { 1: <u>PVC</u> 2: _____				
Coordinates of Well (Use only one of the below coordinate systems)		Joints { 1: <u>Threaded</u> 2: _____				
State Plane Coordinates		SCREEN				
N <input type="checkbox"/> X _____ +/- _____ ft.		Diameter <u>1</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft.				
S <input type="checkbox"/> Y _____ +/- _____ ft.		Type <u>PREPACKED SLOTTED</u> Material <u>PVC</u>				
Latitude, Longitude Coordinates		Set Between <u>14.8</u> ft. and <u>24.8</u> ft.				
Latitude: <u>39.94636</u> Longitude: <u>-82.94544</u>		GRAVEL PACK (Filter Pack)				
Elevation of Well in feet: <u>758.2</u> +/- <u>0.5</u> ft.		Material/ Size <u>#5 Sand</u> Vol/Wt. Used <u>100 lbs</u>				
Datum Plane: <input type="checkbox"/> NAD27 <input checked="" type="checkbox"/> NAD83 Elevation Source <u>GLOBAL</u>		Method of Installation <u>Poured (gravity)</u>				
Source of Coordinates: <u>GLOBAL POSITIONING SYSTEM</u>		Depth: Placed From: <u>12.8</u> ft. To: <u>24.8</u> ft.				
Well location written description:		GROUT				
		Material <u>Bentonite</u> Vol/Wt. Used <u>50 lbs</u>				
		Method of Installation <u>Poured (gravity)</u>				
		Depth: Placed From: <u>12.8</u> ft. To: <u>0</u> ft.				
		DRILLING LOG*				
Comments on water quality/quantity and well construction:		FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.				
		Color	Texture	Formation	From	To
		BROWN	FIRM	SOIL	0	1
		GRAY-BROWN	SILTY	SILT AND CLAY	1	8
		BROWN	CLAYEY	SILT	8	18
		BROWN	SANDY/SILTY	GRAVEL AND SAND	18	24.8
		Water Encountered At <u>19</u> <u>24.8</u>				
WELL TEST*						
Pre-Pumping Static Level <u>18.8</u> ft. Date <u>9/28/2020</u>						
Measured from <u>TOP OF CASING</u>						
Pumping test method <u>BAILING</u>						
Test Rate _____ gpm Duration of Test _____ hrs.						
Feet of Drawdown _____ ft. Sustainable Yield _____ gpm						
*(Attach a copy of the pumping test record, per section 1521.05, ORC)						
Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
PUMP/PITLESS						
Type of pump _____ Capacity _____ gpm						
Pump set at _____ ft. Pitless Type _____						
Pump installed by _____						
I hereby certify the information given is accurate and correct to the best of my knowledge.						
Drilling Firm <u>ENVIROCORE, INC.</u>						
Address <u>8250 ESTATES PK</u>						
City, State, Zip <u>PLAIN CITY OH 43064</u>						
Signed <u>JOE FLECK</u> Date <u>11/2/2020</u> (Filed Electronically)						
ODH Registration Number <u>003259</u>		Aquifer Type (Formation producing the most water.) <u>GRAVEL & SAND</u>				
		Date of Well Completion <u>9/28/2020</u> Total Depth of Well <u>24.8</u> ft.				

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources

Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2082953

Page 1 of 1 for this record.

WELL LOCATION <p>County <u>FRANKLIN</u> Township <u>COLUMBUS</u></p> <p>MIDDLE WEST SPIRITS, LLC Owner/Builder</p> <p>1165 ALUM CREEK DR Address of Well Location</p> <p>City <u>COLUMBUS</u> Zip Code +4 <u>43209</u></p> <p>Permit No. _____ Section; _____ and/or Lot No. _____</p> <p>Use of Well <u>MONITOR</u></p> <p>Coordinates of Well (Use only one of the below coordinate systems)</p> <p>State Plane Coordinates</p> <p>N <input type="checkbox"/> X _____ +/- _____ ft. S <input type="checkbox"/> Y _____ +/- _____ ft.</p> <p>Latitude, Longitude Coordinates</p> <p>Latitude: <u>39.946527</u> Longitude: <u>-82.94633</u></p> <p>Elevation of Well in feet: <u>758.2</u> +/- <u>0.5</u> ft.</p> <p>Datum Plane: <input type="checkbox"/> NAD27 <input checked="" type="checkbox"/> NAD83 Elevation Source <u>GLOBAL</u></p> <p>Source of Coordinates: <u>GLOBAL POSITIONING SYSTEM</u></p> <p>Well location written description: <u>B-18</u></p> <p>Comments on water quality/quantity and well construction:</p>		CONSTRUCTION DETAILS <p>Drilling Method: <u>DIRECT PUSH</u></p> <p>BOREHOLE/CASING (Measured from ground surface)</p> <p>1 { Borehole Diameter <u>3.25</u> inches Depth <u>24.9</u> ft. Casing Diameter <u>1</u> in. Length <u>14.9</u> ft. Thickness <u>0.154</u> in.</p> <p>2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in.</p> <p>Casing Height Above Ground <u>0</u> ft.</p> <p>Type { 1: <u>PVC</u> 2: _____</p> <p>Joints { 1: <u>Threaded</u> 2: _____</p> <p>SCREEN</p> <p>Diameter <u>1</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft.</p> <p>Type <u>PREPACKED SLOTTED</u> Material <u>PVC</u></p> <p>Set Between <u>14.9</u> ft. and <u>24.9</u> ft.</p> <p>GRAVEL PACK (Filter Pack)</p> <p>Material/ Size <u>#5 SAND</u> Vol/Wt. Used <u>100 LBS</u></p> <p>Method of Installation <u>Poured (gravity)</u></p> <p>Depth: Placed From: <u>12.9</u> ft. To: <u>24.9</u> ft.</p> <p>GROUT</p> <p>Material <u>Bentonite</u> Vol/Wt. Used <u>50 LBS</u></p> <p>Method of Installation <u>Poured (gravity)</u></p> <p>Depth: Placed From: <u>12.9</u> ft. To: <u>0</u> ft.</p> <p>DRILLING LOG*</p> <p>FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Color</th> <th>Texture</th> <th>Formation</th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>BROWN</td> <td>FIRM</td> <td>SOIL</td> <td>0</td> <td>1</td> </tr> <tr> <td>GRAY-BROWN</td> <td>SILTY</td> <td>SILT AND CLAY</td> <td>1</td> <td>8</td> </tr> <tr> <td>BROWN</td> <td>CLAYEY</td> <td>SILT</td> <td>8</td> <td>18</td> </tr> <tr> <td>BROWN</td> <td>SANDY/SILTY</td> <td>GRAVEL AND SAND</td> <td>18</td> <td>24.9</td> </tr> <tr> <td colspan="4" style="text-align: right;">Water Encountered At</td> <td><u>19</u> <u>24.9</u></td> </tr> <tr> <td colspan="5" style="height: 40px;"></td> </tr> <tr> <td colspan="5" style="height: 40px;"></td> </tr> <tr> <td colspan="5" style="height: 40px;"></td> </tr> </tbody> </table> <p>WELL TEST *</p> <p>Pre-Pumping Static Level <u>19.2</u> ft. Date <u>9/28/2020</u></p> <p>Measured from <u>TOP OF CASING</u></p> <p>Pumping test method <u>BAILING</u></p> <p>Test Rate _____ gpm Duration of Test _____ hrs.</p> <p>Feet of Drawdown _____ ft. Sustainable Yield _____ gpm</p> <p>*(Attach a copy of the pumping test record, per section 1521.05, ORC)</p> <p>Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No</p> <p>PUMP/PITLESS</p> <p>Type of pump _____ Capacity _____ gpm</p> <p>Pump set at _____ ft. Pitless Type _____</p> <p>Pump installed by _____</p> <p>I hereby certify the information given is accurate and correct to the best of my knowledge.</p> <p>Drilling Firm <u>ENVIROCORE, INC.</u></p> <p>Address <u>8250 ESTATES PK</u></p> <p>City, State, Zip <u>PLAIN CITY OH 43064</u></p> <p>Signed <u>JOE FLECK</u> Date <u>11/2/2020</u> (Filed Electronically)</p> <p>ODH Registration Number <u>003259</u></p> <p>Aquifer Type (Formation producing the most water) <u>GRAVEL & SAND</u></p> <p>Date of Well Completion <u>9/28/2020</u> Total Depth of Well <u>24.9</u> ft.</p>	Color	Texture	Formation	From	To	BROWN	FIRM	SOIL	0	1	GRAY-BROWN	SILTY	SILT AND CLAY	1	8	BROWN	CLAYEY	SILT	8	18	BROWN	SANDY/SILTY	GRAVEL AND SAND	18	24.9	Water Encountered At				<u>19</u> <u>24.9</u>															
Color	Texture	Formation	From	To																																											
BROWN	FIRM	SOIL	0	1																																											
GRAY-BROWN	SILTY	SILT AND CLAY	1	8																																											
BROWN	CLAYEY	SILT	8	18																																											
BROWN	SANDY/SILTY	GRAVEL AND SAND	18	24.9																																											
Water Encountered At				<u>19</u> <u>24.9</u>																																											

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources

Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2082954

Page 1 of 1 for this record.

WELL LOCATION <p>County <u>FRANKLIN</u> Township <u>COLUMBUS</u></p> <p>MIDDLE WEST SPIRITS, LLC Owner/Builder</p> <p>1165 ALUM CREEK DR Address of Well Location</p> <p>City <u>COLUMBUS</u> Zip Code +4 <u>43209</u></p> <p>Permit No. _____ Section: _____ and/or Lot No. _____</p> <p>Use of Well <u>MONITOR</u></p> <p>Coordinates of Well (Use only one of the below coordinate systems)</p> <p>State Plane Coordinates</p> <p>N <input type="checkbox"/> X _____ +/- _____ ft. S <input type="checkbox"/> Y _____ +/- _____ ft.</p> <p>Latitude, Longitude Coordinates</p> <p>Latitude: <u>39.946656</u> Longitude: <u>-82.946032</u></p> <p>Elevation of Well in feet: <u>758.2</u> +/- <u>0.5</u> ft.</p> <p>Datum Plane: <input type="checkbox"/> NAD27 <input checked="" type="checkbox"/> NAD83 Elevation Source <u>GLOBAL</u></p> <p>Source of Coordinates: <u>GLOBAL POSITIONING SYSTEM</u></p> <p>Well location written description: <u>B-19</u></p> <p>Comments on water quality/quantity and well construction:</p>		CONSTRUCTION DETAILS <p>Drilling Method: <u>DIRECT PUSH</u></p> <p>BOREHOLE/CASING (Measured from ground surface)</p> <p>1 { Borehole Diameter <u>3.25</u> inches Depth <u>24.9</u> ft. Casing Diameter <u>1</u> in. Length <u>14.9</u> ft. Thickness <u>0.154</u> in.</p> <p>2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in.</p> <p>Casing Height Above Ground <u>0</u> ft.</p> <p>Type { 1: <u>PVC</u> 2: _____</p> <p>Joints { 1: <u>Threaded</u> 2: _____</p> <p>SCREEN</p> <p>Diameter <u>1</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft.</p> <p>Type <u>PREPACKED SLOTTED</u> Material <u>PVC</u></p> <p>Set Between <u>14.9</u> ft. and <u>24.9</u> ft.</p> <p>GRAVEL PACK (Filter Pack)</p> <p>Material/ Size <u>#5 SAND</u> Vol/Wt. Used <u>100 LBS</u></p> <p>Method of Installation <u>Poured (gravity)</u></p> <p>Depth: Placed From: <u>14.9</u> ft. To: <u>24.9</u> ft.</p> <p>GROUT</p> <p>Material <u>Bentonite</u> Vol/Wt. Used <u>50 LBS</u></p> <p>Method of Installation <u>Poured (gravity)</u></p> <p>Depth: Placed From: <u>14.9</u> ft. To: <u>0</u> ft.</p> <p>DRILLING LOG*</p> <p>FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Color</th> <th>Texture</th> <th>Formation</th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>BROWN</td> <td>FIRM</td> <td>SOIL</td> <td>0</td> <td>1</td> </tr> <tr> <td>GRAY-BROWN</td> <td>SILTY</td> <td>SILT AND CLAY</td> <td>1</td> <td>8</td> </tr> <tr> <td>BROWN</td> <td>CLAYEY</td> <td>SILT</td> <td>8</td> <td>18</td> </tr> <tr> <td>BROWN</td> <td>SANDY/SILTY</td> <td>GRAVEL AND SAND</td> <td>18</td> <td>24.9</td> </tr> <tr> <td colspan="4" style="text-align: right;">Water Encountered At</td> <td><u>19</u> <u>24.9</u></td> </tr> <tr> <td colspan="5" style="height: 40px;"></td> </tr> <tr> <td colspan="5" style="height: 40px;"></td> </tr> <tr> <td colspan="5" style="height: 40px;"></td> </tr> </tbody> </table> <p>WELL TEST*</p> <p>Pre-Pumping Static Level <u>21.2</u> ft. Date <u>9/28/2020</u></p> <p>Measured from <u>TOP OF CASING</u></p> <p>Pumping test method <u>BAILING</u></p> <p>Test Rate _____ gpm Duration of Test _____ hrs.</p> <p>Feet of Drawdown _____ ft. Sustainable Yield _____ gpm</p> <p>*(Attach a copy of the pumping test record, per section 1521.05, ORC)</p> <p>Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No</p> <p>PUMP/PITLESS</p> <p>Type of pump _____ Capacity _____ gpm</p> <p>Pump set at _____ ft. Pitless Type _____</p> <p>Pump installed by _____</p> <p>I hereby certify the information given is accurate and correct to the best of my knowledge.</p> <p>Drilling Firm <u>ENVIROCORE, INC.</u></p> <p>Address <u>8250 ESTATES PK</u></p> <p>City, State, Zip <u>PLAIN CITY OH 43064</u></p> <p>Signed <u>JOE FLECK</u> Date <u>11/2/2020</u> (Filed Electronically)</p> <p>ODH Registration Number <u>003259</u></p> <p>Aquifer Type (Formation producing the most water.) <u>GRAVEL & SAND</u></p> <p>Date of Well Completion <u>9/28/2020</u> Total Depth of Well <u>24.9</u> ft.</p>	Color	Texture	Formation	From	To	BROWN	FIRM	SOIL	0	1	GRAY-BROWN	SILTY	SILT AND CLAY	1	8	BROWN	CLAYEY	SILT	8	18	BROWN	SANDY/SILTY	GRAVEL AND SAND	18	24.9	Water Encountered At				<u>19</u> <u>24.9</u>															
Color	Texture	Formation	From	To																																											
BROWN	FIRM	SOIL	0	1																																											
GRAY-BROWN	SILTY	SILT AND CLAY	1	8																																											
BROWN	CLAYEY	SILT	8	18																																											
BROWN	SANDY/SILTY	GRAVEL AND SAND	18	24.9																																											
Water Encountered At				<u>19</u> <u>24.9</u>																																											

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources

Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605

Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2082955

Page 1 of 1 for this record.

WELL LOCATION	CONSTRUCTION DETAILS			
County <u>FRANKLIN</u>	Drilling Method: <u>DIRECT PUSH</u>			
BOREHOLE/CASING (Measured from ground surface)				
1 { Borehole Diameter <u>3.25</u> inches Depth <u>24.9</u> ft.				
Casing Diameter <u>1</u> in. Length <u>14.9</u> ft. Thickness <u>0.154</u> in.				
2 { Borehole Diameter <u></u> inches Depth <u></u> ft.				
Casing Diameter <u></u> in. Length <u></u> ft. Thickness <u></u> in.				
Casing Height Above Ground <u>0</u> ft.				
Type { 1: <u>PVC</u>				
2: <u></u>				
Joints { 1: <u>Threaded</u>				
2: <u></u>				
SCREEN				
Diameter <u>1</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft.				
Type <u>PREPACKED SLOTTED</u> Material <u>PVC</u>				
Set Between <u>14.9</u> ft. and <u>24.9</u> ft.				
GRAVEL PACK (Filter Pack)				
Material/ <u>#5 SAND</u> Vol/Wt. <u>Used 100 LBS</u>				
Method of Installation <u>Poured (gravity)</u>				
Depth: Placed From: <u>12.9</u> ft. To: <u>24.9</u> ft.				
GROUT				
Material <u>Bentonite</u> Vol/Wt. <u>Used 50 LBS</u>				
Method of Installation <u>Poured (gravity)</u>				
Depth: Placed From: <u>12.9</u> ft. To: <u>0</u> ft.				
DRILLING LOG*				
Comments on water quality/quantity and well construction:				
FORMATION INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.				
Color	Texture	Formation	From	To
BROWN	FIRM	SOIL	0	1
GRAY-BROWN	SILTY	SILT AND CLAY	1	8
BROWN	CLAYEY	SILT	8	18
BROWN	SANDY/SILTY	GRAVEL AND SAND	18	24.9
Water Encountered At				19
WELL TEST *				
Pre-Pumping Static Level <u>18.9</u> ft. Date <u>9/28/2020</u>				
Measured from <u>TOP OF CASING</u>				
Pumping test method <u>BAILING</u>				
Test Rate <u></u> gpm Duration of Test <u></u> hrs.				
Feet of Drawdown <u></u> ft. Sustainable Yield <u></u> gpm				
*(Attach a copy of the pumping test record, per section 1521.05, ORC)				
Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
PUMP/PITLESS				
Type of pump <u></u> Capacity <u></u> gpm				
Pump set at <u></u> ft. Pitless Type <u></u>				
Pump installed by <u></u>				
I hereby certify the information given is accurate and correct to the best of my knowledge.				
Drilling Firm <u>ENVIROCORE, INC.</u>				
Address <u>8250 ESTATES PK</u>				
City, State, Zip <u>PLAIN CITY OH 43064</u>				
Signed <u>JOE FLECK</u> Date <u>11/2/2020</u>				
(Filed Electronically)				
ODH Registration Number <u>003259</u>				
Aquifer Type (Formation producing the most water.) <u>GRAVEL & SAND</u>				
Date of Well Completion <u>9/28/2020</u> Total Depth of Well <u>24.9</u> ft.				

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

WELL LOG AND DRILLING REPORT

DNR 7802.05e

Ohio Department of Natural Resources

Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605
Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number

2082956

Page 1 of 1 for this record.

WELL LOCATION		CONSTRUCTION DETAILS																																														
County <u>FRANKLIN</u> Township <u>COLUMBUS</u>		Drilling Method: <u>DIRECT PUSH</u>																																														
MIDDLE WEST <u>SPIRITS, LLC</u> Owner/Builder		<u>BOREHOLE/CASING</u> (Measured from ground surface)																																														
1165 ALUM CREEK DR Address of Well Location		1 { Borehole Diameter <u>3.25</u> inches Depth <u>24.9</u> ft. Casing Diameter <u>1</u> in. Length <u>14.9</u> ft. Thickness <u>0.154</u> in. 2 { Borehole Diameter _____ inches Depth _____ ft. Casing Diameter _____ in. Length _____ ft. Thickness _____ in. Casing Height Above Ground <u>0</u> ft.																																														
City <u>COLUMBUS</u> Zip Code +4 <u>43209</u>		Type { 1: <u>PVC</u> 2: _____																																														
Permit No. _____ Section: _____ and/or Lot No. _____		Joints { 1: <u>Threaded</u> 2: _____																																														
Use of Well <u>MONITOR</u>		<u>SCREEN</u>																																														
Coordinates of Well (Use only one of the below coordinate systems)		Diameter <u>1</u> in. Slot Size <u>0.01</u> in. Screen Length <u>10</u> ft.																																														
State Plane Coordinates		Type <u>PREPACKED SLOTTED</u> Material <u>PVC</u>																																														
N <input type="checkbox"/> X _____ +/- _____ ft. S <input type="checkbox"/> Y _____ +/- _____ ft.		Set Between <u>14.9</u> ft. and <u>24.9</u> ft.																																														
Latitude, Longitude Coordinates		<u>GRAVEL PACK</u> (Filter Pack)																																														
Latitude: <u>39.946888</u> Longitude: <u>-82.94652</u>		Material/ Size <u>#5 SAND</u> Vol/Wt. Used <u>100 LBS</u>																																														
Elevation of Well in feet: <u>758.2</u> +/- <u>0.5</u> ft.		Method of Installation <u>Poured (gravity)</u>																																														
Datum Plane: <input type="checkbox"/> NAD27 <input checked="" type="checkbox"/> NAD83 Elevation Source <u>GLOBAL</u>		Depth: Placed From: <u>12.9</u> ft. To: <u>24.9</u> ft.																																														
Source of Coordinates: <u>GLOBAL POSITIONING SYSTEM</u>		<u>GROUT</u>																																														
Well location written description: <u>B-21</u>		Material <u>Bentonite</u> Vol/Wt. Used <u>50 LBS</u>																																														
		Method of Installation <u>Poured (gravity)</u>																																														
		Depth: Placed From: <u>12.9</u> ft. To: <u>0</u> ft.																																														
DRILLING LOG*																																																
Comments on water quality/quantity and well construction:																																																
FORMATIONs INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.																																																
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 25%;">Color</th> <th style="width: 25%;">Texture</th> <th style="width: 25%;">Formation</th> <th style="width: 25%;">From</th> <th style="width: 25%;">To</th> </tr> </thead> <tbody> <tr> <td><u>BROWN</u></td> <td><u>FIRM</u></td> <td><u>SOIL</u></td> <td><u>0</u></td> <td><u>1</u></td> </tr> <tr> <td><u>GRAY-BROWN</u></td> <td><u>SILTY</u></td> <td><u>SILT AND CLAY</u></td> <td><u>1</u></td> <td><u>8</u></td> </tr> <tr> <td><u>BROWN</u></td> <td><u>CLAYEY</u></td> <td><u>SILT</u></td> <td><u>8</u></td> <td><u>18</u></td> </tr> <tr> <td><u>BROWN</u></td> <td><u>SANDY/SILTY</u></td> <td><u>GRAVEL AND SAND</u></td> <td><u>18</u></td> <td><u>24.9</u></td> </tr> <tr> <td colspan="4" style="text-align: right;">Water Encountered At</td> <td><u>19</u> <u>24.9</u></td> </tr> <tr> <td colspan="4"></td> <td></td> </tr> <tr> <td colspan="4"></td> <td></td> </tr> <tr> <td colspan="4"></td> <td></td> </tr> </tbody> </table>				Color	Texture	Formation	From	To	<u>BROWN</u>	<u>FIRM</u>	<u>SOIL</u>	<u>0</u>	<u>1</u>	<u>GRAY-BROWN</u>	<u>SILTY</u>	<u>SILT AND CLAY</u>	<u>1</u>	<u>8</u>	<u>BROWN</u>	<u>CLAYEY</u>	<u>SILT</u>	<u>8</u>	<u>18</u>	<u>BROWN</u>	<u>SANDY/SILTY</u>	<u>GRAVEL AND SAND</u>	<u>18</u>	<u>24.9</u>	Water Encountered At				<u>19</u> <u>24.9</u>															
Color	Texture	Formation	From	To																																												
<u>BROWN</u>	<u>FIRM</u>	<u>SOIL</u>	<u>0</u>	<u>1</u>																																												
<u>GRAY-BROWN</u>	<u>SILTY</u>	<u>SILT AND CLAY</u>	<u>1</u>	<u>8</u>																																												
<u>BROWN</u>	<u>CLAYEY</u>	<u>SILT</u>	<u>8</u>	<u>18</u>																																												
<u>BROWN</u>	<u>SANDY/SILTY</u>	<u>GRAVEL AND SAND</u>	<u>18</u>	<u>24.9</u>																																												
Water Encountered At				<u>19</u> <u>24.9</u>																																												
WELL TEST *																																																
Pre-Pumping Static Level <u>18.5</u> ft. Date <u>9/28/2020</u>																																																
Measured from <u>TOP OF CASING</u>																																																
Pumping test method <u>BAILING</u>																																																
Test Rate _____ gpm Duration of Test _____ hrs.																																																
Feet of Drawdown _____ ft. Sustainable Yield _____ gpm																																																
*(Attach a copy of the pumping test record, per section 1521.05, ORC)																																																
Is Copy Attached? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Flowing Well? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No																																																
PUMP/PITLESS																																																
Type of pump _____ Capacity _____ gpm																																																
Pump set at _____ ft. Pitless Type _____																																																
Pump installed by _____																																																
I hereby certify the information given is accurate and correct to the best of my knowledge.																																																
Drilling Firm <u>ENVIROCORE, INC.</u>																																																
Address <u>8250 ESTATES PK</u>																																																
City, State, Zip <u>PLAIN CITY OH 43064</u>																																																
Signed <u>JOE FLECK</u> Date <u>11/2/2020</u>																																																
(Filed Electronically)																																																
ODH Registration Number <u>003259</u>																																																
Aquifer Type (Formation producing the most water.) <u>GRAVEL & SAND</u>																																																
Date of Well Completion <u>9/28/2020</u> Total Depth of Well <u>24.9</u> ft.																																																

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.
Distribute copies of this record to Customer, and Local Health Department.

APPENDIX E
CHEMICALS OF CONCERN TABLE

Appendix E: Chemicals of Concern

PANDEY
ENVIRONMENTAL, LLC

Bexley 948 Ferndale: 948 Ferndale Place; Bexley, Ohio

The list below represents specific chemicals of concern for each identified area. It is important to note that laboratory analytical suites are often broader than the lists shown below. For instance, a lab may have many more analytes in its default "VOCs" package than those listed below. As such, the analyses listed below represent a minimum group of analytes for each identified area, and additional analyses may have been performed. Chemical Abstract Service (CAS) numbers are represented in parentheses after each chemical name.

Site-Wide-Soils: Site-Wide Soils

Metals & Inorganic Analytes

Arsenic, Inorganic (7440-38-2)	Cadmium (7440-43-9)
Chromium, Total (7440-47-3)	Lead and Compounds (7439-92-1)
Mercury and Compounds (7439-97-6)	Selenium (7782-49-2)
Silver (7440-22-4)	

Volatile Organic Compounds (VOCs)

Acetone (67-64-1)	Benzene (71-43-2)
Carbon Disulfide (75-15-0)	Carbon Tetrachloride (56-23-5)
Chlorobenzene (108-90-7)	Chloroform (67-66-3)
Chloromethane (74-87-3)	Cumene (98-82-8)
Dichlorobenzene, 1,2- (95-50-1)	Dichlorobenzene, 1,4- (106-46-7)
Dichloroethane, 1,1- (75-34-3)	Dichloroethylene, 1,1- (75-35-4)
Dichloroethylene, 1,2-trans- (156-60-5)	Ethylbenzene (100-41-4)
Methyl Ethyl Ketone (2-Butanone) (78-93-3)	Methyl tert-Butyl Ether (MTBE) (1634-04-4)
Methylene Chloride (75-09-2)	n-butyl benzene (104-51-8)
n-propyl benzene (103-65-1)	Sec-butyl benzene (135-98-8)
Tetrachloroethylene (127-18-4)	Toluene (108-88-3)
Trichloroethane, 1,1,1- (71-55-6)	Trichloroethane, 1,1,2- (79-00-5)
Trichloroethylene (79-01-6)	Trihalomethanes, Total (TotTHM)
Trimethylbenzene, 1,2,4- (95-63-6)	Trimethylbenzene, 1,3,5 (108-67-8)
Vinyl Chloride (75-01-4)	Xylenes (1330-20-7)

Semi-Volatile Organic Compounds (SVOCs)

Acenaphthene (83-32-9)	Acenaphthylene (208-96-8)
Anthracene (120-12-7)	Benz[a]anthracene (56-55-3)
Benzo(g,h,i)perylene (191-24-2)	Benzo[a]pyrene (50-32-8)
Benzo[b]fluoranthene (205-99-2)	Benzo[k]fluoranthene (207-08-9)

Appendix E: Chemicals of Concern

PANDEY
ENVIRONMENTAL, LLC

Bexley 948 Ferndale: 948 Ferndale Place; Bexley, Ohio

The list below represents specific chemicals of concern for each identified area. It is important to note that laboratory analytical suites are often broader than the lists shown below. For instance, a lab may have many more analytes in its default "VOCs" package than those listed below. As such, the analyses listed below represent a minimum group of analytes for each identified area, and additional analyses may have been performed. Chemical Abstract Service (CAS) numbers are represented in parentheses after each chemical name.

Site-Wide-Soils: Site-Wide Soils

<u>Semi-Volatile Organic Compounds (SVOCs)</u>	
	Bis(2-ethylhexyl)phthalate (117-81-7)
Butyl Benzyl Phthalate (85-68-7)	Chrysene (218-01-9)
Dibenz[a,h]anthracene (53-70-3)	Dibutyl Phthalate (84-74-2)
Fluoranthene (206-44-0)	Fluorene (86-73-7)
Indeno[1,2,3-cd]pyrene (193-39-5)	Methylnaphthalene, 2- (91-57-6)
Naphthalene (91-20-3)	Phenanthrene (85-01-8)
Phenol (108-95-2)	Pyrene (129-00-0)

APPENDIX F
ANALYSES WITH MDL ABOVE STANDARDS

Table F-1: Soil Analyses with MDL above Standard**Bexley 948 Ferndale: 948 Ferndale Place; Bexley, Ohio****PANDEY**

ENVIRONMENTAL, LLC

Sample ID	Sample Date	Method Detection Limit (MDL)	Reporting Limit (RL)	Unrestricted/Residential Standard	Commercial w/ High Freq. Child Exp. Standard	Commercial/Industrial Standard	Construction Standard
Aminobiphenyl, 4- (CAS 92-67-1)							
948 Ferndale:SB-1:2-4	1/24/2024	N/A	0.78	0.52	1.65	3.4	53
948 Ferndale:SB-2:0-2	1/24/2024	N/A	0.85	0.52	1.65	3.4	53
948 Ferndale:SB-3:4-6	1/24/2024	N/A	0.8	0.52	1.65	3.4	53
948 Ferndale:SB-4:4-6	1/24/2024	N/A	0.83	0.52	1.65	3.4	53
948 Ferndale:SB-5:0-2	1/24/2024	N/A	0.83	0.52	1.65	3.4	53
948 Ferndale:SB-6:4-6	1/24/2024	N/A	0.75	0.52	1.65	3.4	53
Benzidine (CAS 92-87-5)							
948 Ferndale:SB-1:2-4	1/24/2024	N/A	0.39	0.047	0.151	0.31	4.8
948 Ferndale:SB-2:0-2	1/24/2024	N/A	0.43	0.047	0.151	0.31	4.8
948 Ferndale:SB-3:4-6	1/24/2024	N/A	0.4	0.047	0.151	0.31	4.8
948 Ferndale:SB-4:4-6	1/24/2024	N/A	0.41	0.047	0.151	0.31	4.8
948 Ferndale:SB-5:0-2	1/24/2024	N/A	0.42	0.047	0.151	0.31	4.8
948 Ferndale:SB-6:4-6	1/24/2024	N/A	0.38	0.047	0.151	0.31	4.8
Dimethylbenz(a)anthracene, 7,12- (CAS 57-97-6)							
948 Ferndale:SB-1:2-4	1/24/2024	N/A	0.39	0.041	0.126	0.25	4
948 Ferndale:SB-2:0-2	1/24/2024	N/A	0.43	0.041	0.126	0.25	4
948 Ferndale:SB-3:4-6	1/24/2024	N/A	0.4	0.041	0.126	0.25	4
948 Ferndale:SB-4:4-6	1/24/2024	N/A	0.41	0.041	0.126	0.25	4
948 Ferndale:SB-5:0-2	1/24/2024	N/A	0.42	0.041	0.126	0.25	4
948 Ferndale:SB-6:4-6	1/24/2024	N/A	0.38	0.041	0.126	0.25	4
Nitrosodiethylamine, N- (CAS 55-18-5)							
948 Ferndale:SB-1:2-4	1/24/2024	N/A	0.39	0.072	0.231	0.47	7.4
948 Ferndale:SB-2:0-2	1/24/2024	N/A	0.43	0.072	0.231	0.47	7.4
948 Ferndale:SB-3:4-6	1/24/2024	N/A	0.4	0.072	0.231	0.47	7.4
948 Ferndale:SB-4:4-6	1/24/2024	N/A	0.41	0.072	0.231	0.47	7.4
948 Ferndale:SB-5:0-2	1/24/2024	N/A	0.42	0.072	0.231	0.47	7.4
948 Ferndale:SB-6:4-6	1/24/2024	N/A	0.38	0.072	0.231	0.47	7.4
Nitrosodimethylamine, N- (CAS 62-75-9)							
948 Ferndale:SB-1:2-4	1/24/2024	N/A	0.39	0.164	0.859	1.1	11
948 Ferndale:SB-2:0-2	1/24/2024	N/A	0.43	0.164	0.859	1.1	11
948 Ferndale:SB-3:4-6	1/24/2024	N/A	0.4	0.164	0.859	1.1	11
948 Ferndale:SB-4:4-6	1/24/2024	N/A	0.41	0.164	0.859	1.1	11
948 Ferndale:SB-5:0-2	1/24/2024	N/A	0.42	0.164	0.859	1.1	11
948 Ferndale:SB-6:4-6	1/24/2024	N/A	0.38	0.164	0.859	1.1	11

All values are in mg/kg (ppm)

Standards are single chemical Generic Direct Contact Soil Standards (GDCSS)